

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-9, ISSUE-7, 2022

58

PREDICTION OF SOFTWARE BUGS USING SUPERVISED

MACHINE LEARNING TECHNIQUES
1P.Elango, 2R.Sakthi, 3S.Senthilvelan

1 II MCA, Paavai Engineering College, Namakkal
2II MCA, Paavai Engineering College, Namakkal

3 Professor, Department of MCA, Paavai Engineering College, Namakkal

Abstract: Software Bug Prediction is a
critical topic in the software development
and maintenance lifecycles that affects the
overall success of software. This is so that
software quality, reliability, efficiency, and
cost can all be improved by foreseeing issues
in advance. However, creating a reliable bug
prediction model is a difficult endeavor, and
numerous methods have been put forth in
the literature. In this study, a machine
learning (ML)-based prediction model for
software bugs is presented. Based on past
data, three supervised ML systems have been
used to forecast potential software flaws.
These classifiers include AdaBoost, decision
trees, and Bagging. The evaluation method
demonstrated that ML algorithms may be
applied successfully and accurately. In order
to evaluate the suggested prediction model
with other strategies, a comparison measure
is also used. The gathered data indicated that
the ML technique performs better.
Keywords: Machine Learning (ML),
AdaBoost, decision trees, and Bagging

I. INTRODUCTION
The presence of programming bugs influences
decisively on programming dependability,
quality and support cost. Accomplishing
without bug programming additionally is
difficult work, even the product applied
cautiously in light of the fact that most time
there is covered up bugs. As well as, creating
programming bug forecast model which could
foresee the broken modules in the beginning
stage is a genuine test in programming.
Programming bug expectation is a fundamental
movement in programming improvement. This
is on the grounds that anticipating the buggy
modules preceding programming organization

accomplishes the client fulfillment, further
develops the general programming execution. In
addition, foreseeing the product bug early
further develops programming variation to
various conditions and builds the asset use.
Different strategies have been proposed to
handle Software Bug Prediction (SBP) issue.
The most realized methods are Machine
Learning (ML) procedures. The ML methods
are utilized broadly in SBP to anticipate the
buggy modules in light of authentic issue
information, fundamental measurements and
different programming processing strategies.
In this paper, three regulated ML learning
classifiers are utilized to assess the ML abilities
in SBP. The review examined AdaBoost
classifier, Decision Tree (DT) classifier and
Bagging classifier. The talked about ML
classifiers are applied to three distinct datasets
got from [1] and [2] works.

The remainder of this paper is coordinated as
follow. Segment 2 presents a conversation of
the connected work in SBP. An outline of the
chose ML calculations is introduced in Section
3. Area 4 depicts the datasets and the
assessment procedure. Trial results are
displayed in Section 5 followed by ends and
future works.

II. RELATED WORK
There are many examinations about
programming bug forecast utilizing AI methods.
For instance, the concentrate in [2] proposed a
direct Auto-Regression (AR) way to deal with
anticipate the flawed modules. The review
predicts the product future shortcomings relying
upon the authentic information of the product
amassed deficiencies. The concentrate likewise
assessed and contrasted the AR model and the
Known power model (POWM) utilized Root

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-9, ISSUE-7, 2022

59

Mean Square Error (RMSE) measure.
Notwithstanding, the review utilized three
datasets for assessment and the outcomes were
promising.
The examinations in [3], [4] broke down the
materialness of different ML techniques for
issue expectation. Sharma and Chandra [3]
added to their review the most significant past
explores about every ML methods and the latest
things in programming bug forecast utilizing
Machine Learning. This study can be utilized as
ground or move toward plan for future work in
programming bug expectation.
R. Malhotra in [5] introduced a decent
deliberate survey for programming bug
expectation strategies, which utilizing Machine
Learning (ML). The paper incorporated a
survey of the multitude of concentrates between
the time of 1991 and 2013, dissected the ML
strategies for programming bug expectation
models, and evaluated their presentation, looked
at among ML and measurement methods,
looked at between changed ML procedures and
summed up the strength and the shortcoming of
the ML procedures.

In [6], the paper gave a benchmark to permit to
normal and valuable correlation between
various bug forecast draws near. The review
introduced a complete correlation between a
notable bug forecast draws near, likewise
presented new methodology and assessed its
presentation by building a decent examination
with different methodologies utilizing the
introduced benchmark.
D. L. Gupta and K. Saxena [7] fostered a model
for object-situated Software Bug Prediction
System (SBPS). The review consolidated
comparable kinds of imperfection datasets
which are accessible at Promise Software
Engineering Repository. The review assessed
the proposed model by utilizing the exhibition
measure (exactness). At last, the review results
showed that the typical proposed model
precision is 76.27%.

Rosli et al. [8] introduced an application
involving the hereditary calculation for issue
inclination expectation. The application gets its
qualities, for example, the item arranged
measurements and count measurements values
from an open source programming project. The
hereditary calculation involves the application's
qualities as contributions to produce rules which

utilized to arrange the product modules to
inadequate and non-deficient modules. At long
last, envision the results utilizing hereditary
calculation applet.

The concentrate in [9] surveyed different article
situated measurements by utilized AI methods
(choice tree and brain organizations) and factual
procedures (sensible and direct relapse). The
aftereffects of the review showed that the
Coupling Between Object (CBO) metric is the
best measurement to foresee the bugs in the
class and the Line Of Code (LOC) is genuinely
well, yet the Depth of Inheritance Tree (DIT)
and Number Of Children (NOC) are untrusted
measurements.

Singh and Chug [10] talked about five well
known ML calculations utilized for
programming deformity expectation for
example Counterfeit Neural Networks (ANNs),
Particle Swarm Optimization (PSO), Decision
Tree (DT), Naïve Bayes (NB) and Linear
Classifiers (LC). The review introduced
significant outcomes including that the ANN
has least mistake rate followed by DT, however
the straight classifier is superior to different
calculations in term of imperfection forecast
precision, the most well known techniques
utilized in programming deformity expectation
are: DT, BL, ANN, SVM, RBL and EA, and the
normal measurements utilized in programming
deformity expectation review are: Line Of Code
(LOC) measurements, object arranged
measurements, for example, union, coupling
and legacy, additionally different measurements
called mixture measurements which utilized
both item situated and procedural
measurements, besides the outcomes showed
that most programming deformity forecast
concentrated on utilized NASA dataset and
PROMISE dataset.

Besides, the examinations in [11], [12] talked
about different ML methods and gave the ML
capacities in programming deformity forecast.
The examinations helped the designer to
involve valuable programming measurements
and appropriate information mining method to
improve the product quality. The concentrate in
[12] decided the best measurements which are
valuable in imperfection expectation like
Response for class (ROC), Line of code (LOC)
and Lack Of Coding Quality (LOCQ).

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-9, ISSUE-7, 2022

60

Bavisi et al. [13] introduced the most famous
information mining method (k-Nearest
Neighbors, Naïve Bayes, C-4.5 and Decision
trees). The review broke down and analyzed
four calculations and talked about the benefits
and impediments of every calculation. The
consequences of the review showed that there
were various variables influencing the exactness
of every method; like the idea of the issue, the
utilized dataset and its exhibition framework.

The explores in [14], [15] introduced the
connection between object-situated
measurements and issue inclination of a class.

Singh et al. [14] showed that CBO, WMC,
LOC, and RFC are powerful in foreseeing
abandons, while Malhotra and Singh [15]
showed that the AUC is compelling
measurement and can be utilized to anticipate
the flawed modules in beginning stages of
programming advancement and to work on the
exactness of ML strategies.
This paper examines three notable ML methods
AdaBoost, Decision Tree and Bagging . The
paper likewise assesses the ML classifiers
utilizing different execution estimations (for
example exactness, accuracy, review, F-
measure and ROC bend). Three public datasets
are utilized to assess the three ML classifiers.
Then again, the vast majority of the referenced
related works examined more ML procedures
and different datasets. A portion of the past
investigations mostly cantered around the
measurements that make the SBP as productive
as could be expected, while other past
examinations proposed various strategies to
foresee programming bugs rather than ML
procedures.

III. METHODOLOGY
Three supervised machine learning
algorithms— AdaBoost, Decision Tree and
Bagging —will be analysed and evaluated in
this paper (DT). The paper includes a
comparative examination of the chosen ML
algorithms and demonstrates the performance
accuracy and capacity of the ML algorithms in
software bug prediction.

In order to be able to predict the output values
for new input data based on the derived
inferring function, supervised machine learning
algorithms attempt to develop an inferring

function by drawing conclusions about
relationships and dependencies between the
known inputs and outputs of the labelled
training data. The selected supervised ML
methods are briefly described below:

Decision Tree: Data mining frequently
employs the decision tree (DT), a popular
learning technique. When we talk about DT,
we're talking about a hierarchical, predictive
model that employs the item's observations as
branches to get to the item's target value in the
leaf. DT is a tree having leaf nodes that reflect
the decision and decision nodes that have
several branches.

Bagging: In order to increase the accuracy of
unstable classification systems, Breiman [21]
created bagging, along with bootstrap and
aggregation approaches. For bagging, a decision
tree is constructed using X samples and X
bootstrap datasets with X randomly chosen
examples and replacement from Y. By a
majority vote, the expected new sample class is
determined. The outcomes of comparing new
cases to X decision trees are documented.
Although a single decision tree's
straightforward interpretation is lost, bagging
increases the precision of categorization rules.
In this investigation, decision stump and
bagging with J48 are used[22]."Boosting" is
used to increase a particular learning algorithm's
accuracy. A machine learning technique called
"boosting" identifies and combines loose rules
to obtain precise categorization. The boosting
technique uses a variety of training set subsets
from the base learning to repeatedly find rules.

AdaBoost: The first effective boosting
technique for binary classification was called
AdaBoost, short for Adaptive Boosting. It is an
algorithm for supervised machine learning and
is used to improve the performance of all
machine learning algorithms. Like decision
trees, it works best with reluctant students.
These are models whose categorization
accuracy is slightly better than random chance.

IV. EVALUATION
METHODOLOGY

Three separate datasets, DS1, DS2, and DS3,
were techniques in this investigation. The two
metrics that make up each dataset are the
number of faults (Fi) and the number of test

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-9, ISSUE-7, 2022

61

employees (Ti) for each day (Di) over the
course of a software project. 56 measurements
from the DS1 dataset were used in the testing
procedure described in [1]. DS2, which was
also obtained from [1], measured system errors
over the course of 100 consecutive days of
testing a software system made up of 200
modules, each with one kilo line of Fortran
code. DS2 includes 101 measures. The real
measured data for a test/debug programme of a
real-time control application provided in [18] is
contained in DS3, which was produced in [2].
The datasets underwent preprocessing using a
suggested clustering method. The proposed
clustering algorithm assigns class labels to the
data. These labels are designed to divide the
total number of errors into the following five
categories: A, B, C, D, and E. The value of each
class and the number of examples that fall under
it in each dataset are displayed in Table IV.
We techniques a set of well-known measures
[19] based on the generated confusion matrixes
to assess the effectiveness of utilizing ML
algorithms in software bug prediction. The
confusion matrix and the techniques evaluation
metrics are described in the next subsections.

Table 1. NUMBER OF FAULTS
CLASSIFICATION

Fault
Class

Number
of Faults

Number of
Instances

DS1 DS2 DS3
A 0-7 35 80 65
B 8-14 5 32 44
C 15-21 4 10 8
D 22-28 6 12 19
E More than 28 5 4 2

V. RESULTS

Weka, a machine learning tool, was utilized
in this work to assess three ML algorithms
(AdaBoost, DT, and Boosting) in the topic
of software bug prediction. For each
dataset, cross-validation (5-fold) is the
technique.Table 2 displays the performance
of the classifiers for the three datasets.

Table 2: Classification Accuracy achieved by
Different Techniques

Data
Set

AdaBoost Baggin
g

DT

DS1 0.88 0.91 0.86
DS2 0.92 0.96 0.92
DS3 0.95 0.98 0.94

VI. CONCLUSIONS
Software bug prediction is a technique that
uses historical data to build a prediction
model to forecast potential software flaws
in the future. Different strategies have been
put forth using various datasets, metrics,
and performance measures. This research
assessed the application of machine
learning methods to the problem of software
bug prediction. Three machine learning
methods—DT,AdaBoost, and Bagging—
have been techniques.Three actual
testing/debugging datasets are used to carry
out the evaluation process. On the basis of
metrics for accuracy, precision, recall, F-
measure, and RMSE, experimental findings
are compiled. Results show that ML
techniques are effective methods for
anticipating software issues in the future.
The comparison findings demonstrated that
the Bagging classifier outperformed the
others in terms of results.

REFERENCES
[1] Y. Tohman, K. Tokunaga, S. Nagase,

and M. Y., “Structural approach to the
estimation of the number of residual
software faults based on the hyper-
geometric districution model,” IEEE
Trans. on Software Engineering, pp.
345–355, 1989.

[2] A. Sheta and D. Rine, “Modeling
Incremental Faults of Software Testing
Process Using AR Models ”, the
Proceeding of 4th International Multi-
Conferences on Computer Science and
Information Technology (CSIT 2006),
Amman, Jordan. Vol. 3. 2006.

[3] D. Sharma and P. Chandra, "Software
Fault Prediction Using Machine-
Learning Techniques," Smart
Computing and Informatics. Springer,
Singapore, 2018. 541-549.

[4] R. Malhotra, "Comparative analysis of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-9, ISSUE-7, 2022

62

statistical and machine learning methods
for predicting faulty modules," Applied
Soft Computing 21, (2014): 286-297

[5] Malhotra, Ruchika. "A systematic review
of machine learning techniques for
software fault prediction." Applied Soft
Computing 27 (2015): 504-518.

[6] D'Ambros, Marco, Michele Lanza, and
Romain Robbes. "An extensive
comparison of bug prediction
approaches." Mining Software
Repositories (MSR), 2010 7th IEEE
Working Conference on. IEEE, 2010.

[7] Gupta, Dharmendra Lal, and Kavita
Saxena. "Software bug prediction using
object-oriented metrics." Sādhanā(2017):
1-15..

[8] M. M. Rosli, N. H. I. Teo, N. S. M. Yusop
and N. S. Moham, "The Design of a
Software Fault Prone Application Using
Evolutionary Algorithm," IEEE
Conference on Open Systems, 2011.

[9] T. Gyimothy, R. Ferenc and I. Siket,
"Empirical Validation of Object-Oriented
Metrics on Open Source Software for
Fault Prediction," IEEE Transactions On
Software Engineering, 2005.

[10] Singh, Praman Deep, and Anuradha
Chug. "Software defect prediction
analysis using machine learning
algorithms." 7th International Conference
on Cloud Computing, Data Science &
Engineering-Confluence, IEEE, 2017.

[11] M. C. Prasad, L. Florence and A. Arya,
"A Study on Software Metrics based
Software Defect Prediction using Data
Mining and Machine Learning
Techniques," International Journal of
Database Theory and Application, pp.
179-190, 2015.

[12] Okutan, Ahmet, and OlcayTanerYıldız.
"Software defect prediction using
Bayesian networks." Empirical Software
Engineering 19.1 (2014): 154-181.

[13] Bavisi, Shrey, Jash Mehta, and Lynette
Lopes. "A Comparative Study of
Different Data Mining Algorithms."
International Journal of Current

Engineering and Technology 4.5 (2014).
[14] Y. Singh, A. Kaur and R. Malhotra,

"Empirical validation of object-oriented
metrics for predicting fault proneness
models," Software Qual J, p. 3–35,
2010.

[15] Malhotra, Ruchika, and Yogesh Singh.
"On the applicability of machine
learning techniques for object oriented
software fault prediction." Software
Engineering: An International Journal
1.1 (2011): 24-37.

[16] A.TosunMisirli, A. se Ba¸ S.Bener,“A
Mapping Study on Bayesian Networks
for Software Quality Prediction”,
Proceedings of the 3rd International
Workshop on Realizing Artificial
Intelligence Synergies in Software
Engineering, (2014).

[17] T. Angel Thankachan1, K. Raimond2,
“A Survey on Classification and Rule
Extraction Techniques for Data
mining”,IOSR Journal of Computer
Engineering ,vol. 8, no. 5,(2013), pp.
75-78.

[18] T. Minohara and Y. Tohma, “Parameter
estimation of hyper-geometric
distribution software reliability growth
model by genetic algorithms”, in
Proceedings of the 6th International
Symposium on Software Reliability
Engineering, pp. 324–329, 1995.

[19] Olsen, David L. and Delen, “ Advanced
Data Mining Techniques ”, Springer, 1st
edition, page 138, ISBN 3-540-76016-1,
Feb 2008.

[20] L. H. Crow, “Reliability for complex
repairable systems,” Reliability and
Biometry, SIAM, pp. 379–410, 1974.

[21] Breiman, L. (1996). Bagging predictors.
Machine learning, 24(2), 123-140

[22] Sasi Kumar.M, S SenthilVelan(2020)
“Enhanced Edge Based Image Retrieval
Using Boosting Framework”,
International Journal Of Current
Engineering And Scientific Research
(IJCESR), Issn : 2394-0697, Vol.
No7(7), 2020, Pp. 37-41.

