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Abstract—An error estimation technique 
based on the L2 error norm is implemented 
in this paper for axisymmetrical magnetos-
tatic finite-element analysis using the mag-
netic potential. The adaptive mesh generated 
by this error estimator is tested on three 
commonly used FEA formulations and the 
results are compared. Convergence of both 
the global and local errors are used as indica-
tors. The air gap where force is to be com-
puted is refined based on the rate of change 
in the calculated force rather than the flux 
density. Results that highlight the accuracy 
of the combined methods for force calcula-
tions are displayed for a solenoid actuated 
valve with non-linear FEA. 
Index Terms—FEA, error, L2 norm, adap-
tive mesh, axisymmetric, air gap, force, flux 
density, magnetic potential. 
 
I. Introduction 
Modern finite-element analysis (FEA) includes 
a posteriori error estimation techniques to pro-
vide an indication of the relative error, and to 
refine the mesh so as to improve the accuracy. 
Error estimation methods used in mechanics are 
usually applied in magnetostatics with some 
modifications. The modifications include varia-
tions of the Zienkiewicz-Zhu (Z-Z) method. 
The main drawback of the Z-Z method is inade-
quate refinement in domains consisting of mul-
tiple materials. An alternative error estimation 
technique used in mechanics based on the L2 
norm is implemented in this paper and works 
well with multiple materials. The local error is 
used for mesh refinement. Its effectiveness in 
magnetostatics is displayed using a solenoid 
design as an example. Even small error magni-
tudes in the flux density in air gaps usually re-
sults in large inaccuracies in the calculated 
forces. The air gap is refined by the rate of 
change in the force. 

II. Axisymmetric FEA 
Axisymmetric magnetostatic solutions can be 
obtained by using the scalar magnetic potential. 
Three different developments are shown below 
with equations describing each coefficient of 
the stiffness matrix and source vector.  

The functional without Neuman boundary con-
ditions is in cylindrical coordinates, (r, φ, z). Aφ 
and Jφ are the magnetic potential and the source 
current respectively. µ is the permeability of the 
material. Note that dΩ = 2πrdrdz. Oncea solu-
tion for Aφ has been obtained, the flux density 
in each element is found using 
 
 

 
 
Aφ is expanded as Aφ = XM i NiAi where Ni 
are the scalar bases and testing functions. M is 
the number of nodes in the mesh. A. Direct So-
lution The direct solution results from the first 
variation of (1) which is 
 

 
 
The equation for the terms in the stiffness ma-
trix and source vector is 
 

 
The subscripts, i and j, span the entire mesh. Ωe 
implies that the integral is over an element of 
the mesh. 
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B. Similar to 2-D Magnetostatics In this formu-
lation, the equation for 2-D magnetostatics is 
directly used after replacing the coordinate va-
riables, x = r and y = z. The functional for 2-D 
magnetostatics in cartesian co-ordinates without 
Neuman boundary conditions is 

 
 
After the taking the first variation, the equation 
for the terms in the stiffness matrix and source 
vector is 

 
C. Change of Variables A change of variables is 
made to both the potential and source to elimi-
nate any terms containing r in the denominator 

 
 
for the stiffness and source vector matrices. The 
potential is recovered after the matrix solution 
when a transformation has been used as in (7) 
and (9). 
III. L2 Norm Error Calculation  
The smoothed or averaged flux density value at 
each node is first calculated from the FEA re-
sults. Separate nodal values are computed for 
nodes on boundaries between different material 
properties. The smoothed norm is defined as 

 
where Ne is the number of elements in the mesh, 
B¯ e sn is the smoothed flux density interpo-
lated at the center of element n. The local error 
in element n is computed using 

 
where B̄ e   is the flux density obtained directly 
from the FEA results and is piece-wise constant 
with first order triangles. Note that the permea-

bility is not used in the calculations. The local 
error is used to refine the mesh until it is lower 
than a user specified tolerance. By not using the 
permeability in the calculated errors, refinement 
in multiple materials is easily obtained based 
only on the rate of change of the flux density 
IV. Air Gap Force Error Calculation 
 The rate of change of the flux density in the air 
gap where force values are to be estimated may 
not be high enough to obtain adequate refine-
ment based on the norm error described in the 
previous section. A thin layer is created in the 
air gap and a secondary error computing me-
chanism is used. The force in the air gap is a 
function of the radial and ˆz components of the 
smoothed flux density, i.e., F = f (Br , Bz). The 
force is calculated in each element at all three 
corner nodes when firstorder triangles are used. 
The maximum value of all elements in the layer 
is stored as F e max . The nodal force error be-
tween nodes in each element is calculated 

 
where i and j span the three nodes of each ele-
ment. If any of the three errors is greater than a 
user specified value, the element is marked for 
refinement. This process continues until there 
are no errors that are greater than the specified 
value. V. Mesh Refinement The mesh is refined 
using the error norm and provides good refine-
ment in areas where the flux density changes 
rapidly. The air gap region where force is to be 
computed is refined based on the force errors. 
The Delaunay triangulation property and user 
defined triangle quality constraints are res-
pected in each mesh via element quality checks 
during refinement. A robust mesh generator ca-
pable of fine refinement is mandatory to ensure 
accurate results. The procedure is summarized 
as 1) Generate initial mesh 2) Perform finite 
element analysis, post process and compute er-
rors 3) Mark elements that require refinement 
and split triangles 4) Ensure Delaunay criteria 
and mesh quality are maintained, if not perform 
maintenance 5) Provide refined mesh back to 
the FEA engine Steps 2-5 are repeated, exit is at 
step 2. VI. Test Solenoid Actuator The main 
dimensions of the solenoid which works with 
bidirectional direct current were already deter-
mined by the application. When energized, the 
solenoid actuates a normally open valve via the 
stem and closes it. A spring forces the plunger 
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back to the normally open position upon de-
energization. The entire plunger cavity is filled 
with hydraulic fluid and this solenoid-valve is 
designed for use in the hydraulic system in an 
airborne application. The cross section of the 
axisymmetric model is shown in Fig. 1. All 
magnetic parts were made from 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Cross section of the solenoid (left) and 
FEA model (right). Electrical insulation materi-
al has not been shown. 1) Magnetic housing, 2) 
Magnetic top end plate, 3) Coil, 4) Magnetic 
plunger, 5) Non-magnetic spacer tube, 6) Valve 
stem (non-magnetic), 7) Stationary magnetic 
insert, 8) Magnetic bottom end plate, 9) Valve 
body. The air gap height is 2.5 mm. All sharp 
edges were eliminated in the production ver-
sion. the same carbon steel material and the coil 
is wound with 2150 turns. Fig. 2 shows the lay-
ers used for force calculation 

 
 
Fig. 2. Detail of the air gap showing two layers. 
The force is calculated in the lower layer. The 
height of the layers can be varied and the layers 
are formed below the plunger. The force calcu-
lation can be done on the entire plunger as well 
but requires unacceptable convergence time. 
VII. Results The tolerances for the error in flux 
density and the air gap force were set at 12 and 
3 % respectively for adaptive FEA. The mini-
mum element area during refinement was re-
stricted to 1 −18 sq. m. Each solution at a par-
ticular plunger position converged after 15 to 25 
steps. Fig. 3 shows a typical convergence plot 
of the air gap force error. For a given error to-
lerance, convergence can be achieved at much 
faster rates in linear magnetostatics. The rate of 

convergence is a function of the saturation level 
of magnetic steel and the strength of enforce-
ment of refinement which was maintained at a 
weak level. The overall rate of convergence was 
best with method (B), then method (A), and fol-
lowed by method (C) which was slower by a 
factor of 4. This section displays the results 

 
Fig. 3. Convergense of the air gap force error 
with adaptive steps using method (C). The non-
linear case has 18 steps while the linear case has 
12 steps. obtained with the methods described 
earlier. A. Adaptive Mesh Fig. 4 shows the 
adaptive mesh generation based on FEA error. 
The mesh is based on method (C) and the air 
gap mesh refinement is not shown for brevity. It 
can clearly be seen that the mesh is only refined 
in areas that require refinement and it can also 
be observed that the Delaunay condition pro-
vides refinement in areas not marked such as in 
the coil. This helps to reduce the local error 
with global changes and improves the overall 
quality of the results 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Initial mesh with ∼2500 nodes (left), 
intermediate mesh after 5 steps (center), final 
mesh with ∼20000 nodes after 18 steps (right). 
B. Fields The Flux contours are shown in Fig. 5 
and are nearly identical. Unlike 2-D magnetos-
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tatics in cartesian coordinates, the contour plots 
in the axisymmetric case cannot be relied on to 
provide an accurate indication of the actual flux 
paths due to the factor r in (2). The results for 
all three methods are similar. Each method has 
a different number of unknowns as the adaptive 
mesh generation produces different errors. 
While the results for the flux density appear to 
be the same, the total convergence time is very 
different.  
 

 
Fig. 5. Magnetic potential contour plots with 
identical limits for all three methods. Method 
(A) (left), method (B) (center), method (C) 
(right). The limits span the entire range from 
zero to the maximum value of the potential with 
equal intervals. Figs. 6 and 7 show the flux den-
sity vector and the flux density. The flux densi-
ty is the smoothed value obtained by gradient 
recovery and is piecewise-linear. The magnetic 
circuit is not saturated and is within the flux 
carrying capability of the materials chosen. The 
arrow plot shows that there is no significant 
leakage other than in the air gap region. Fig. 8 
shows the flux density calculated at a small dis-
tance above the air gap with the plunger at its 
default position. C. Force The force in the air 
gap with varying air gap height is show in Fig. 
9. A constant current is fed into the coil. Thedi-
rect axisymmetric solution and the method 
based on the 2- D magnetostatic solution pro-
vide nearly identical results at all positions. 

 
Fig. 6. Plot showing the flux density vectors. 
The solenoid has been rotated by 90o in the 
CCW direction. The air gap is at its maximum 
height of 2.5 mm. 

 

 
Fig. 7. Plot showing the magnitude of flux den-
sity. The solenoid has been rotated by 90o in the 
CCW direction. Exact interpolation has been 
used to plot the piecewise-linear recovered flux 
density with 24 shades of grey. 
VIII. Conclusion  
An error estimation technique that combines 
both the flux density error and force error for 
mesh refinement in axisymmetric finite-element 
analysis was described with a solenoid as an 
example. It was shown that efficient mesh re-
finement is obtained so that the overall error is 
reduced while keeping the number of unknowns 
to a minimum. Accurate force calculations are 
obtained as the force error itself is used for 
mesh refinement in regions where force is to be 
computed. The method based on the 2-D mag-
netostatic solution proved to be the most effi-
cient of the three axisymmetric solutions that 
were tested. This paper is an extension to axi-
symmetric problems of the techniques described 
in [7]. The torque error is replaced by the force 
error here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Flux density plot with all three methods 
at a constant z and normalized r. The constant z 
value is chosen such that it passes through the 
plunger. While all three methods provide simi-
lar results, method (B) which is based on the 
symmetric 2-D magnetostatics solution provides 
the smoothest curve. The flux density increases 
in the plunger with increasing radius, then be-
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comes close to zero in the coil, then increases 
again in the return path of the housing, and then 
drops to zero outside the solenoid body.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Force calculated by all three methods 
using non-linear FEA with varying air gap 
height. Methods (A) and (B) provide similar 
results at all positions, method (C) provides 
lower values. The measured values agree close-
ly with methods (A) and (B) but are not shown. 
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