

LEAN AND VALUE MANAGEMENT IN CONSTRUCTION PROJECTS

Bavithra K¹, Karthigaipriya T² Student ¹,Assistant Professor²,Department of Civil Engineering, Thiagarajar College of Engineering,Madurai 625 015, Tamilnadu, India. bavithrak1127@gmail.com, karthigaipriya@tce.edu

Abstract— Lean philosophies are new phenomenon emerging in construction industries and manufacturing process for waste reduction. Lean management is a technique for reduction of unnecessary waste which will influence the total cost of works. It also creates value for money in construction projects by saving cost. The process of Lean management will automatically turned into Value management by achieving value for money without compromising function. Value management is a process of achieving the best value for customer satisfaction. Instead of processes. integrating these two by implementing Lean management in construction will automatically create value. Aim of this project is to obtain the best value by implementing continuous improvement method. A questionnaire survey that assessed the impact of applying Lean management and Value management in construction projects. Adoption of Lean management will definitely yield value management in construction industries by obtaining results from questionnaire. The study strongly suggests that implementation of Lean will deliver value from customer perspective.

Index Terms— Customer value, Cost, Lean management, Quality, Time and Value management.

I. INTRODUCTION

As the increased competition in global construction market, all construction companies are seeking perfection in each process in construction project in order to increase value by eliminating waste. Waste generation in construction industry had been the subject of various research projects all over the world in modern years. It is often recognized that a very high level of waste exists in construction. Although numerous techniques and practices have been developed to improve efficiency, Lean techniques promise to eliminate waste in order to improve efficiency. The end product of every construction project is customer value. Customer satisfaction is very important for recognition of each construction company. Value management is the process of achieving customer value. Value can be obtained by reducing cost from reduction of unnecessary waste.

A. Lean management

It is an approach to work systematically in order to achieve incremental changes in process to improve Efficiency or Quality. Lean construction generally acknowledges its lack It mainly focuses on process/product efficiency.

- B. Lean Techniques
 - 1. 5s visual workplace
 - 2. Just in time
 - 3. Continuous improvement
 - 4. Value stream mapping
 - 5. Work in process

C. Value management

It is a systematic process of team based Decision Making to achieve Expected Outcome. Value management contributes to a clear customer perspective of value from the early stage of projects. It mainly focuses on process/product function.

- D. Value management techniques
 - 1. Value Tree
 - 2. Client Value System

- 3. Function Analysis
- 4. FAST Diagrams
- 5. Function/Cost Analysis

E. Value through lean

Lean and value management mainly focus on reducing non value added activities in order to save cost spent on waste which leads to achieve the best value for customer satisfaction.

- 1. What the client precisely needs or wants
- 2. Value improvement and value for money
- 3. Elimination of waste
- 4. Eliminating unnecessary cost

II. Methodology

This chapter provides knowledge about implementation of lean and value management in construction industries. Literatures have been selected and studied implementing for lean and value management in construction project. In order to frame a perfect methodology and to know the details about the study to be undertaken, a wide literature survey was done. A lot of literatures related to lean and value management techniques have been reviewed. After reviewing literatures , questionnaire was prepared for data collection and suitable analysis techniques were used to find important factors to be implemented for achieving the best value for customer by eliminating waste.

A. Questionnaire

Structured questionnaire was prepared for collecting data from workers in construction industries. Almost 22 factors regarding lean and value management were considered for further analysis process. The following factors were taken from questionnaire

- 1. Awareness and knowledge about LM and VM
- 2. Frequency of site visit
- 3. Transportation time spent
- 4. Percentage of unused material
- 5. Time frame for material order
- 6. Duration of material stored in site
- 7. Handling of leftover material
- 8. Delay in work process
- 9. Reasons for delay Work process wasted

- 10. Recalculation of resources
- 11. Meeting with team members
- 12. Opinion about VM
- 13. Stage for executing VM
- 14. Factor influencing selection of alternative in VM
- 15. Effective VM method Impact of adopting VM
- 16. Challenges for implementing VM
- 17. Improvements taken for customer satisfaction
- 18. Determining customer value
- 19. Communication to suppliers and clients
- 20. Status of employee suggestions
- 21. Value of recycled service/product
- 22. Relationship between LEAN and VM

B. Analysis of Questionnaire survey

The next process after data collection is analysis of data. Quantitative analysis was done for questionnaire survey.

Two types of quantitative analysis were carried out.

- 1. Descriptive analysis
- 2. Inferential analysis

C. Descriptive analysis

Descriptive statistics is the exploration of data that aids to narrate and outline data in a significant way. It is an easy way to express our data. It is used to describe a situation. Descriptive statistics is very important to present our raw data in effective way using numerical calculations or graphs or tables.

Types of Descriptive statistics

- 1. Measure of Central Tendency
- 2. Measure of Variability

1) Measure of central tendency

A measure of central tendency is an exclusive value that can endeavor to represent a set of details by recognizing the middle position within that set of data.

- a) Mean
- b) Median
- c) Mode
- a) Mean

The mean is the average of a data set collected. It is the most accessible and conventional standard of central tendency. b Madian The median is intermediate value of the given data set. To find the median, data points are arranged in ascending order and then the middle number is found.

c) Mode

The mode is the most customary number in a data set. Mode is the only measure of central tendency that can be used for definite data.

2) Measure of variability

A measure of variability is a condensation of statistics that constitutes the proportion of dissipation in a dataset.

I. Standard deviation

II. Coefficient of variance

a) Standard deviation

The standard deviation is the standard or typical difference between each data in data set and the mean value of data set.

b) Coefficient of variance

It is a respective standard deviation which is a systematized measure of dispersion of a probability distribution. It is expanded as the ratio between standard deviation to mean.

 $CV = \sigma/\mu$

Where σ = standard deviation and μ = mean. Inferential statistics

In inferential statistics projections are assembled by taking sort of data. It can be described as an arbitrary sample of data taken from a population to define and produce assumption about the population. It acknowledges us to differentiate data, produce hypothesis and predictions. It is used to explicate the chance of happening of an event.

a) Relative Importance Index (RII)

RII is the most customary method of determining the relative importance among every determined factor. It is calculated by using the following formula

$RII = \Sigma(ax)/A \times N$

Where, a = weights given to every response, ranging from 1 (first scale or lowest scale) and expanded numerically by addition of 1 till the last scale (Highest weight),

X=Frequency of occurrence of "a",

A=Highest weight and N=Total number of respondents

b) Chi-square test

The chi-square test of goodness of fit test is used to determine whether there is a significant difference between factors. Significance value of 0.05 was used to test the differences. Chi –square value can be computed from the following formula

$$\chi 2 = \Sigma \left(\text{Oi} - \text{Ei} \right)^2 / \text{Ei}$$

Where , Oi = observed frequency, Ei = expected frequency

c) Content analysis

Content analysis is an investigation tool used to establish the presence of definite words, themes, or concepts within some given qualitative data.

D. Questionnaire survey

The questionnaire was sent to 50 respondents, however, a total of 36 responses were received back. Preliminary investigation is carried out for the decisiveness of the survey. A total of 36 responses were kept for further analysis making a response rate of almost 72% which is considered.

Out of the 36 respondents who responded to the questionnaire, 6% were from Assistant managers, 8% from Billing engineers, 8% from the Construction managers, 11% from Design engineers, 3% from Draughtsman, 8% from Executive engineers, 6% from Project directors,8% from Project managers,6% from Proprietor,22% from Site engineers,8% from Supervisors and 6% from Trainee engineers.

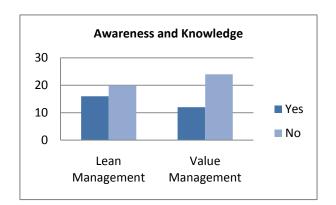
The bulk of the respondents (66%) have an average experience between 11-15 years and 5-10 years. Whereas 17% have experience for less than 5 years and 14% have experience between 16-20 years. The minimum response rate (3%) was from respondents having more than 20 years of experience.

Analysis theme

The collected data were analyzed using Descriptive statistics, relative importance index (RII),Chi-square test and content analysis.

Table 1 Analysis theme

Respon se type	Descript ive analysis	Chi Square a= 0.05	Conte nt Analys is	RII
Single option	~	~		
Multipl e option	✓	~		


Open ended			~	
Likert Se	cale-Multipl cel		d Single	~
(Factor analysis)				

III. FINDINGS

From the table and histogram, it is clearly known that most of the respondents are not having awareness and knowledge about lean and value management. Degree of knowledge about both lean and value management is dependent based on the different position of employees in construction industry.

Table 2 Response percentage for awarenes	s and
knowledge	

Categories	Having Awareness and Knowledge	Lack of Awareness and Knowledge
Lean	44%	56%
manageme		
nt		
Value	33%	67%
manageme		
nt		

Fig 1 Awareness and Knowledge

A. Relationship between LM & VM

Chi-square test was done for checking the relationship exists between awareness and knowledge about lean and value management. The table shows that there is some association exists between awareness and knowledge of lean and value management. From this preliminary factor analysis, there is a necessity for implementing lean and value management in construction industries. Further analysis for factors were carried out.

Table 3 Chi square test for awareness and knowledge

Categories Av	Chi square (@ 0.05 Sig) vareness an	Conclusion d knowledge
Lean Manageme nt Value Manageme nt	0.935	SE at 0.05 sig that there is some association exists between awareness and knowledge of Lean and Value management

B. Measure of central tendency

Mean, median, mode values were calculated for all 22 factors. After calculating the values, top 10 factors were determined.

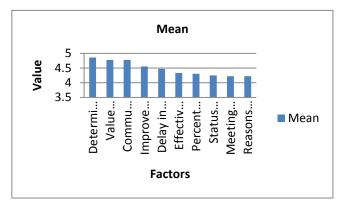


Fig 2 Mean value for important factors

C. Measure of variability

Standard deviation and coefficient of variance values were calculated for all 22 factors. After calculating the values, top 10 factors were determined.

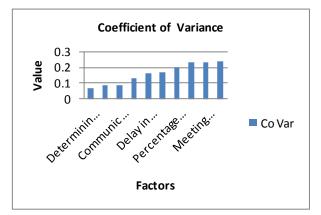


Fig 3 Coefficient of variance

D. Relative importance index

Relative importance index values were determined for finding relationship among all implementation factors.RII values for most important factors were shown here.

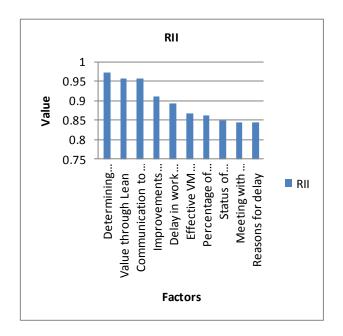
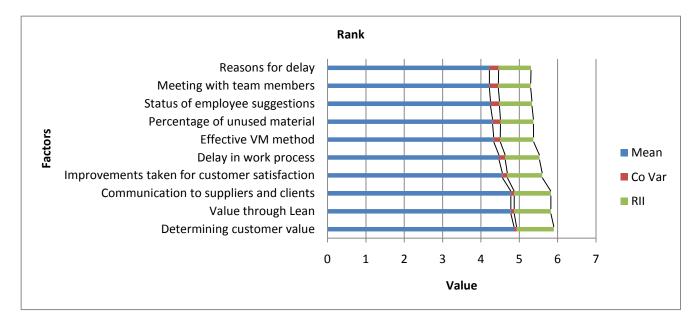


Fig 4 Relative Importance Index


Factors	RII
Determining customer value	0.972
Value through Lean	0.956
Communication to suppliers and clients	0.956
Improvements taken for customer satisfaction	0.911

|--|

Delay in work process	0.894
Effective VM method	0.867
Percentage of unused material	0.861
Status of employee suggestions	0.850
Meeting with team members	0.844
Reasons for delay	0.844
Duration of material stored in site	0.833
Work process wasted	0.822
Time frame for material order	0.822
Stage for executing VM	0.817
Impact of adopting VM	0.811
Handling of leftover material	0.806
Value of recycled service/product	0.806
Frequency of site visit	0.783
Recalculation of resources	0.778
Challenges for implementing VM	0.756
Transportation time spent	0.739
Factor influencing alternative in VM	0.706
Opinion about VM	0.700

E. Important factors

In descriptive analysis, both measure of central tendency and measure of variability were calculated for all factors. Based on the calculated values from descriptive analysis, the most important factors to be implemented first in construction industries were detected by ranking system.

Fig 5 Important factors based on rank

F. Content Analysis

Table 5 Theme analysis

Themens	Code	Frequency	Proporti
	S		on
Waste	W	7	19 %
reduction			
Cost	C	5	14 %
saving			
method			
Customer	S	4	11 %
satisfactio			
n			
Valuable	V	7	19 %
Ignorance	Ι	13	36 %
	Total36		100 %

G. Chi-square test

Most imporant factors were priorized based on ranking system.Chi square test was done for all factors.Results obtained from chis square test were shown for top 10 factors.

Table 6 Chi square test				
Categories	Chi	Conclusion		
	square			
	(@ 0.05			
	Sig)			
Determining Customer value				
Regular survey		SE at 0.05 sig		
from customers		that Customer		
		value can be		
Occasionally	46.167	determined		

Never ask customers		by Regular survey from customer
Categories	Chi square	Conclusion
	(@ 0.05)	
	Sig)	
Val	ue through	Lean
0-10%		SE at 0.05 sig that
11-25%		Value can be
26-35%	105.333	obtained by
36-50%		implementing
51-75%		Lean was
76-100%		achieved as
~		76-100%
	ion to supp	liers and clients
Yes.We have a		
great communication		SE at 0.05 aig that
		SE at 0.05 sig that Communication
stream We have a fair		to suppliers and
relationship,bu	34.667	clients should
t sometimes	57.007	have a Great
there are errors		communication
and mishaps		stream
Always errors		
and mishaps		
Improvem	ents taken	for customer

	satisfaction	n	update inputs		
0-10%	Satistaction	SE at 0.05 sig that	from employees		
11-25%		76-100%	1 2	with team	members
26-35%		Improvements	Once a week		SE at 0.05 sig
36-50%	69.333	have been taken	2-3 times a		that
51-75%	07.555	for customer	week	29.278	Once a week a
76-100%		satisfaction	Daily	27.270	meeting should
/0-100/0			Fortnightly		be organized
			Once a month		with team
Categories	Chi	Conclusion	once a monai		members
	square		Rea	asons for de	
	(@ 0.05		Failure in		
	Sig)		planning of time		
Delay	y in work p	rocess	Not enough		
0-10%		SE at 0.05 sig	workers		
11-25%		that only	Bad		SE at 0.05 sig
26-35%	56.181	0-10% delay is	communication		that Delay is
36-50%		occured in all	Bad preparation	13.778	due to Bad
51-75%		work process	of construction		communicatio
76-100%			plan		n and Delivery
Effe	ctive VM m	ethod	Wrong material		of wrong
Value			is delivered		material
management		SE at 0.05 sig	Quality of the		
workshops		that All three	material is poor		
Value	21.222	methods are	Material is		
engineering		effective for	coming late		
change proposal		achivement of	IV. RESULT		
Lifecycle		anticipated	Most of the res	-	Ŭ
costing		project	awareness and know	-	
Combination of		performance	value manageme		
a,b,c			provided to worke		
Other			value for money. I		-
	ge of unuse	d material	were analyzed for management in co	-	-
0-10%	-		•		could help for
11-25%		SE at 0.05 sig	determining custo		1
26-35%	47.000	that Average	waste reduction v		
36-50%	-	percentage of			mmunication to
51-75%	-	unused material	suppliers and cli		
76-100%		for the entire	reducing errors. In		
		project is 11-25%	Customer satisfa		
Status of	employee s			ay in wor	rk process was
Yes.We ask lot	employee s	uzzconono	determined as 0-1	0%. Bad co	mmunication and
of inputs from			delivery of wrong		
employees and			for delay in constr	1 0	•
update them		SE at 0.05 sig	unused materials i		-
We try to ask	1	that Lot of	be as minimum as		
input,but we are	18.000	inputs should	work progress, onc		-
so busy		be asked from	organized with tea		-
We never ask	1	employees and	could be asked fro		
input		it should be	updated in constru-	ction proces	s.
No.We don't	1	updated			

Interpretation of result

Lean management involves both cost and time factors whereas value management contributes both cost and quality factors. Three factors which are contributing the implementation of both lean and value management are time, cost and quality. By interpreting results obtained from questionnaire, it is clearly observed that the common factor which connects lean and value management is the cost factor. Around 30% of total cost of construction project was saved by adopting value management. Almost the reduction of waste was achieved as 50% in construction process by implementing lean practices. As a result of reducing waste in construction project, the best value for customer satisfaction was achieved as 76-100%. Hence the reduction of waste which will influence the total cost of works will generate the best value for customer satisfaction.

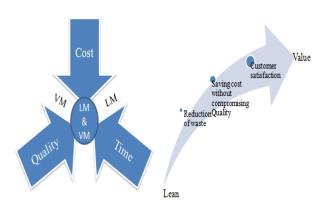


Fig 6 Value through Lean

V. CONCLUSION AND RECOMMENDATIONS

Conclusion

Customer needs are satisfied by reducing waste which will influence the total cost of works from the results obtained from questionnaire analysis. When waste and waste generation factors are eliminated in each and every process of construction works, the utilization of resources will be reduced. So the cost spent on generation of waste will be reduced or eliminated. Customer needs are satisfied while reducing the utilization of resources without compromising the quality. Satisfaction level of customers will be high while utilization of resources will be low. By implementing Lean management in construction, Value management can be created automatically. Hence it is concluded that implementation of Lean and Value management definitely gives the positive results on cost, time and quality.

Recommendations

In order to achive the best value for customer needs, it is necessary to implement lean management in construction industries. The following guidelines are suggested to adopt lean and value management in construction works.

- 1. Awareness of Lean and Value management should be initiated in construction industries.
- 2. Proper information should be passed among team members
- 3. Necessary to adopt proper communication with team in order to avoid delay in work process.
- 4. Time frame for ordering material should be sufficient to avoid ordering errors.
- 5. Coordination between designers and industries should be proper in order to avoid delivery of wrong material.
- 6. In order to achieve all objectives, Value management should be executed throughout the project.
- 7. To avoid wrong construction method, everyday site visit should be carried out.
- 8. To enhance value (Quality) in construction, Clients' willingness is important to pay for reasonable fee.
- 9. Recalculation of resources should be done to achieve minimum percentage of unused/left over materials.
- 10. To avoid Risk at the end of finished project, design team could take a regular survey from customers.

REFERENCES

- 1. Alexandra M.B.R. Tenera, "Integrating Value and Lean Management in Manufacturing Processes", Research Gate Publications ,2011.
- Bjorn Andersen, et.al, "Lean Construction Practices and its Effects: A Case study at St.Olav's Integrated Hospital, Norway", Lean Construction Journal, 2012.
- 3. Carla Beatriz da Luz Peralta, et.al, "A framework proposition to identify

customer value through lean practices", Journal of Manufacturing Technology Management ,2019.

- 4. Devaki and Jayanthi , "Barriers to Implementation of Lean Principles in the Indian Construction Industry", IJERT, 2014.
- 5. Douglas Omoregie Aghimien and Ayodeji Emmanuel Oke, "Application of Value Management to Selected Construction Projects in Nigeria", IISTE ,2015.
- Kissi.E., et.al, "Strategies for Implementing Value Management in the Construction Industry of Ghana", Conference on Infrastructure Development and Livingstone, Zambia Investment Strategies for Africa, 2015.
- Laila M. Khodeir and Alaa El Ghandour, "Examining the role of value management in controlling cost overrun [application on residential construction projects in Egypt]", Ain Shams Engineering Journal, 2019.
- 8. Michael Ncube and Pantaleo D. "Value Rwelamila. Management South Expertise in the African Construction Industry - A Case Study of Gauteng", Mega Journal of Research .2017.
- Mughees Aslam, et.al, "Exploring Factors for Implementing Lean Construction for Rapid Initial Successes in Construction", Journal of Cleaner Production ,2020.
- 10. Muktari Musa, et.al, "Where lean construction and value management meet", conference paper IGLC ,2016.
- 11. Nagi.A, and Altarazi.S, "Integration of value stream map and strategic layout planning into DMAIC approach to improve carpeting process", Journal of Industrial Engineering and Management ,2017.
- Narayanamurthy and Gurumurthy, "7A model-A process selection guide for lean implementation", 25th Annual Conference Production and Operations Management Society, 2014.
- 13. Ogunbiyi Oyedolapo, et.al, "Innovative value management: Assessment of lean construction implementation", Research Gate Publications ,2011.
- 14. Piotr Nowotarski, et.al, "Waste Reduction by Lean Construction - Office

Building Case Study", IOP Conf. Series: Materials Science and Engineering, 2019.

- 15. Piotr Nowotarski, et.al, "Improving Construction Processes Using Lean Management Methodologies – Cost Case Study", Procedia Engineering ,2016.
- 16. Rishav Sarma Bardalai and Arunima Jayakumar, "Study and Implementation of Lean Technique in Construction Industry- A Case Study", International Journal of Innovative Research in Science, Engineering and Technology ,2015.
- 17. Sarhan and Fox, "Barriers to Implementing Lean Construction in the UK Construction Industry", The Built & Human Environment Review ,2013.
- Soren Wandahl, "Lean construction with or without Lean – challenges of implementing Lean construction", Proceedings IGLC ,2014.