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Abstract: Software-Defined Networking 
(SDN) created an opportunity for solving 
these long standing problems. Some of the 
key ideas of SDN are the introduction of 
dynamic programmability in forwarding 
devices through open southbound interfaces, 
the decoupling of the control and data plane, 
and the global view of the network by logical 
centralization of the “network brain”. While 
data plane elements became dumb, but 
highly efficient and programmable packet 
forwarding devices, the control plane 
elements are now represented by a single 
entity, the controller or network operating 
system. Applications implementing the 
network logic run on top of the ONOS 
controller and are much easier to develop 
and deploy when compared to traditional 
network. The traditional networking 
architecture can’t accommodate the advance 
user requirements efficiently. Increase of 
mobile devices, virtualization, high 
automation & security, efficient Big-Data 
management and high quality with variety of 
services, SDN is a promising architecture. 
For sure current network is not dynamic if 
compared to SDN. Though yet SDN, needs 
some time to mature and industry also need 
time to synchronize the devices according to 
it. SDN can also manage optical and wireless 
networks fruitfully. To understand why SDN 
will play a critical role in future in shaping 
various technologies, we have to think what 
actually SDN providing us apart from all 
technical advances? SDN gives user or 
operator a feel of nearness to the network. 
He won’t feel that he is a distinct entity when 

operating on SDN based networks. Hence it 
is true to say that future networks will 
revolve around SDN based networking.  
Keywords: SDN Network; ONOS Controller; 
Protocols; Big-Data; Fault tolerance. 
1. Introduction 
The simplicity in the Internet's design has led to 
a tremendous innovation in the Internet, but the 
network itself remains quite hard to change and 
surprisingly difficult to manage. The root cause 
of this problem in a traditional network lies 
primarily in the complicated control plane 
running on top of all switches and routers 
throughout the network. These networking 
devices are manufactured by different network 
vendors and used trademarked protocols to 
control the data plane. In these devices, 
proprietary firmware on the control plane of the 
switch determines where packets of data are 
forwarded by the data plane. Distributed 
optimization of network control was inherently 
difficult since control plane was a part of 
individual network devices. Software Defined 
Networking (SDN) is a relatively new approach 
to computer networking which evolved from 
some preliminary research and work done at 
UC Berkeley and Stanford University in 2005. 
SDN introduces a layer of software between 
bare metal network components and the 
network administrators who configure and set 
them. This software layer gives network 
administrators an opportunity to make their 
network device adjustments through a software 
interface instead of having to manually 
configure hardware and actually physically 
access network devices giving them a very good 
control over their networks show in Figure 1

. 
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Figure 1 Data and Control plane in traditional networking hardware 

This is achieved by decoupling the system 
that makes decisions about where traffic is sent 
(the control plane) from the underlying systems 
that forwardstraffic to the selected destination 
(the data plane). SDN adheres to open standards 
and is vendor-neutral, i.e. it can theoretically 
operate with any vendor's network hardware. 
This gives organizations the ability to avoid 
vendor lock-in for a host of network products. 

Most current SDN deployments currently 
rely on a single SDN controller. However, as 
the number and size of production networks 
deploying OpenFlow increases, relying on a 
single controller for the entire network might 
not be feasible for several reasons. First, the 
amount of control traffic destined towards the 
centralized controller grows with the number of 
switches. Second, since the system is bound by 
the processing power of that single controller, 
low setup times can grow significantly as 
demand grows with the size of the network. 
This clearly introduces a serious limitation on 
the scalability and fault tolerance of the 
controller. The paper aspire to design and build 
an open source, database backed scalable and 
fault tolerant OpenFlow controller. The 
controller is intended to be used for rapid 
prototyping and research environments. 
2. Related work 

To evaluate reliability and fault tolerance of 
control plane architecture we have to review the 
previous works that have been done related to 
fault tolerance. We can see these works by 
dividing in to three sections depending on their 
control plane scenarios (centralized, 
hierarchical, and fully distributed) will be 
discussed as follows. 

Logical centralization of the network 
control plays a central role in SDN architecture. 
Initial efforts towards implementing such 
architecture focused on its feasibility in real 

world scenarios (e.g. campus networks) and on 
identifying benefits over traditional approaches. 
Initial designs leveraged the use of single 
controller deployments, relying on the now-
standard OpenFlow protocol. Later, other 
designs have been developed and released [1, 2, 
3]. However, most of them do not provide a 
very well defined northbound API, nor attempt 
to shield the application developer from dealing 
with certain low-level mechanisms of 
OpenFlow. Recent work provides interesting 
conclusions interms of centralized controller 
performance. In [5] show that, with minor code 
optimizations and a redesign of the controller 
structure to support multi-threaded parallelism, 
one can drastically improve throughput and 
reduce latency on a centralized, single machine 
controller. Via these optimizations, it has been 
possible to implement controllers capable to 
process up to 12 million packet-in messages per 
second. The research community often argues 
that, despite the advancements in single 
controller processing capabilities, it is still not 
enough to meet the performance, scalability and 
resiliency requirements of large scale 
production environments [5]. The intrinsic 
limitations of this type of design, such as 
increased latency to forwarding devices in large 
networks and difficulty in handling large 
network state, have motivated the development 
of distributed control plane designs. 

Hierarchical control planes are developed 
around the idea that control instances should 
have different roles in the control process. 
Kandoo [6] explicitly separates control among 
two different layers of controllers. The top layer 
is composed of a root controller. It is 
responsible for maintaining global network 
policies and pushing those down to the bottom 
layer controllers. The bottom layer is comprised 
of local controllers. These controllers directly 
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configure the network forwarding devices, and 
share their perceived network state with the root 
controller. This approach has the direct benefit 
of simplifying the presentation of the Global 
Network View to control applications at the 
root controller. However, it requires the 
development and maintenance of one type of 
controller for each control plane layer. The root 
controller introduces concerns as it represents a 
single point of failure, since it is required to 
deal with constant network updates. Moreover, 
it has to operate on an eventually consistent 
network state, since it can only perceive state 
that is reported by local controllers. Design is 
somewhat limited in applicability, being more 
favorable in low latency environments like data 
centers, where traffic locality can be well 
explored in most cases. [7] Presents Difane, a 
solution for network control in which so-called 
Authority Switches are assigned the role of 
forwarding rule caches – much in line with what 
the local controllers illustrated previously 
perform in Kandoo.  
2.1. General Objectives 

The general objective of this thesis is to 
evaluate reliability and fault tolerance of SDN 
control plane architecture which is important to 
customize and use SDN service provider 
network operating system instead of the current 
traditional service provider networking systems. 
2.2.Specific Objectives 
The specific objectives of this paper will be to: 
 Select best controller architecture 

deployment that will be distributed and 
fault tolerance controller 

 Detail analysis on distributed and fault 
tolerance cluster control plane 
architecture 

 How to coordinate primary and backup 
controllers 

 Simulate and evaluate the fault tolerance 
of distributed ONOS cluster controller 
using Mininet emulator. 
 

2.3.Methodology 
There are steps to evaluate the reliability 

and fault tolerance of SDN control plane. These 
steps are important to make this thesis 
successfully. The first step will be understood 
the principles and features of SDN comparing 
with the traditional network existing on the time 
being now. The second step will be analysis of 
Openflow SDN controller platform focusing on 
their control plane architecture and review 
different Openflow controller based on their 
control plane architecture (centralized and 
distributed). And then select the best controller 
that has distributed control plane architecture, it 
will be reliable and fault tolerant. Finally 
analyze the selected SDN controller with 
respect to its reliability and fault tolerance by 
simulating its fault tolerance and reliability 
using simulation software. 
2.4.Architecture of Software Defined 

Networking (SDN) 
An SDN can be logically divided into three 

different layers. The infrastructure layer refers 
to the actual forwarding hardware. This layer 
consists of network devices such as Layer 2 
switches in a LAN centric environment. The 
control layer, also known as the SDN controller 
is where the real intelligence of a Software 
Defined Network is situated. This layer 
implements the basic network services which 
can be used by various networking applications 
in the application layer. The switches that are 
located in the infrastructure layer are not 
traditional network switches. These switches 
need to support some mechanism whereby the 
control layer can talk to and program the 
switches in the infrastructure layer. 
In SDN architecture, southbound application 
program interfaces (APIs) are used to 
communicate between the SDN Controller and 
the switches of the network. They can be open 
or proprietary. The most popular and well 
known southbound interface is the OpenFlow 
protocol. 
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Figure 2. Architecture of a Software Defined Network  

The northbound application programming 
interface (API) on a SDN control layer enables 
application layer to program the network and 
request services from it shows in Figure 2. The 
Northbound API is evolving rapidly but 
currently there are no standards for it. Each 
OpenFlow controller provides their own set of 
interfaces. 

How networks are currently structured 
and operated poses a significant financial issue 
to Internet service providers and, in fact, has 
become a handicap for progress in the cloud and 
service provider space. SDN [13] enables a 
programmable network control and offers a 
solution to a variety of use cases. The success 
stories of these bottom-up SDN solutions have 
led to a shift in the way operators and vendors 
perceive the network. In the following, we 
define four basic principles of SDN. Each of 
these principles is mandatory for classifying a 
technology as SDN. 

The physical separation of control- and 
forwarding- or data plane is the best known 
principle of SDN [14, 15]. It postulates the 
externalization of the control plane from a 
network device to an external control plane 
entity often called the “controller”. In particular, 
this means that an internal software control 
plane, while it may still exist, is not enough to 
brand a device or technology as “Software 
Defined Networking”. The external controller 
has to have the ability to change the forwarding 
behavior of the network element directly. This 
enables several key benefits of SDN. Control- 
and data plane can be developed separately 
from each other, which lowers the entry-to-
market barrier, as a company no longer has to 
have expert knowledge in both areas. Moreover, 
the externalization of a software-based 

controller produces pressure on established 
hardware switch vendors, which are reduced to 
providing forwarding hardware only. This has 
already introduced new and disruptive start-ups 
to the market that have speed up innovation in 
the network. Even the market leader Cisco has 
reacted to this trend by introducing its own 
flavor of SDN with the Application Centric 
Infrastructure concept developed at the Spin-In 
company “Insieme” [16]. Customers are also 
enabled to “mix-and-match” products of 
different vendors and thus increase competition 
further. The switch vendors have reacted to that 
shift by forming the OpenDaylight project for 
an open SDN software platform. Challenges in 
this area are to find the appropriate control 
protocol for the specific scenario out of 
different protocols and protocol versions, and 
the appropriate forwarding elements which 
support this protocol. 

The fundamental paradigm shift in 
networking caused by SDN is represented by 
the introduction of network programmability. 
This is enabled by the external software 
controller and the open interfaces. The 
programmability principle is not limited to 
introducing new network features to the control 
plane but rather represents the ability to treat the 
network as a single programmable entity instead 
of an accumulation of devices that have to be 
configured individually. SDN can thus be 
regarded as a very suitable complement to 
network virtualization providing the control 
plane for an easy operation („programming‟) 
of, e.g., virtual networks in network substrates 
or to control specific flows within a virtual 
network as possible applications. Here it is 
essential to find the appropriate abstraction 
level, which determines on the one hand the 



  
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)  

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020 

16 

ease-of-use for network programmers and on 
the other hand the abstraction overhead and 
there with possible performance degradation. 
2.5. The OpenFlow Architecture 

OpenFlow(OF) is considered the pioneer 
SDN standard. This protocol enabled the 
controller to interact directly with the 
underlying devices (both physical and virtual), 

making the SDN adapt to changing application 
requirements. The controller could set rules 
about forwarding behaviors of each device 
through the OF protocol like modify, drop, en-
queue and forward a packet belonging to 
particular flow. The working of the OF protocol 
can be explained with the Figure 3. 

 
Figure 3 - OpenFlow Architecture 

Every switch in the network has its own set 
of flow tables. Furthermore these tables consist 
of flow entries. A flow entry can be seen as the 
forwarding/routing rules. It has three key 
components: a bit pattern indicating the flow’s 
properties, a list of commands, and a set of 
counters. Whereas a flow is the set of packets 
that match a particular flow entry. Figure 2.5(a) 
displays the main components of an OpenFlow-
based network and the decision making process 
an incoming packet goes through. Thus when a 
packet arrives at the switch it can undergo one 
of the following scenarios: 

1. The packet is a match to a flow entry in 
the switch’s set of flow table and is then 
forwarded according to the rules of that 
particular entry. 

2. The packet is a match but there are no 
actions associated with that flow entry, thus the 
packet is dropped. 

3. The packet is not a match, and is queued 
with an inquiry being sent to the controller, to 
which the controller replies with a new 
OpenFlow entry resulting in future packets to 
be handled by the switch itself. 

As mentioned in the above section 
OpenFlow protocol is the most popular and 
widely accepted protocol for the southbound 
Application Programming Interface. OpenFlow 
protocol intends to provide access to the data 
plane of the switches. It does this by specifying 

a language that a switchcan recognize and use 
to update its forwarding tables. OpenFlow is a 
language for generically defining characteristics 
of a particular flow of traffic and a set of actions 
to be executed when the switch encounters 
packets that matches such characteristics. The 
actual mechanisms used to program flows into 
switch hardware very greatly depending on the 
vendor of the particular hardware. Instead, 
OpenFlow provides a way to describe desired 
flow state within an agent running locally on the 
forwarding device. All switches that are 
OpenFlow enabled will have the OpenFlow 
agent that will interpret the OpenFlow 
commands. The OpenFlow specification also 
includes ways for the OpenFlow controller, 
which is remote and located in the control plane 
to make modifications to this information. The 
OpenFlow agent, armed with the flow 
information programmed into it by a controller, 
acts like the control plane on traditional 
switches. The only difference is that it does not 
have to run routing protocols, or make decisions 
locally. All the decisions are made by the 
remote OpenFlow controller and the OpenFlow 
agent stores these OpenFlow entries, and pushes 
them into the flow tables on the hardware 
device. Figure 4 shows an idealized OpenFlow 
switch where the flow table is controlled by a 
remote OpenFlow controller

. 
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Figure 4 - Idealized OpenFlow Switch 

The OpenFlow controller has a unified view 
of the whole network. It runs the routing or 
switching protocols to collect the relevant 
routing or switching information. There are two 
different ways in which the OpenFlow 
controller can program the switches in the 
network. 

The first packet of each new flow can 
trigger the controller to insert flow entries down 
to the switches and the switch makes efficient 
use of flow table where every flow needs small 
additional flow setup time. The other approach 
is that the flow tables in switch can be pre 
populated by the OpenFlow controller ahead of 
time for all traffic matches that could come into 
the switch. By predefining all the flows and 
actions ahead of time in the switch flow tables, 
the packets can beforwarded at line rate as this 
approach does not require any additional flow 
setup time per individual flow. 

The interface that connects each network 
device to a controller is named the OpenFlow 
channel. This is the interface that is used by the 
controller to manage and configure the 
underling switches, and vice versa receiving 
messages from the switches. Similarly the 
switches use it denote a packet arrival, switch 
state change or any update e.g., alarms. Thus 
the OF protocol messages can be categorized 
into three types [18]. 

• Controller to Switch Messages 
 These types of messages are 
initiated by the controller and are 
employed to directly manage, 
configure or inquire status of the 
devices underneath. 

• Asynchronous Messages 
These are the messages initiated 

by the switches (without the 
controller asking) to notify a packet 
arrival, to give error messages or any 
changes in their state. 

• Symmetric Messages 

These can be initiated both by 
the switch and the controller and 
could be used for sending 
connection establishment messages 
(hello/echo messages) or for testing 
latency. 

There are two types of approaches used by 
the switches to deal with a packet. Either switch 
forwards to controller a message called Packet. 
In which contains complete packet or sends 
some information of the header to get routing 
information. In this case the switch needs to 
have a buffer to store the packet otherwise it 
gets discarded. The variable packet sizes can be 
observed in open flow channel. This packet size 
can vary from 66 Bytes Hello message to 1500 
Bytes data packet. The symmetric messages are 
sent periodically to check the existence of 
device. The frequency of routing queries 
depends on flow arrivals, departures and idle 
flow removals. 
3. Result and Discussion 
3.1.OPEN NETWORK OPERATING 

SYSTEM (ONOS) 
As we have seen trade-offs of the control 

plane architecture of OpenFlow controllers in 
chapter two, ONOS meets the optimum 
requirements of trade-offs between correctness, 
availability, and consistency by having both 
eventually and strong consistency model 
algorithms. It is important to select ONOS as 
service provider network operating systems. 
ONOS is built to provide high availability 
(HA), scale-out, and performance for these 
networks demands. The Southbound modules 
manage the physical topology, react to network 
events and program/configure the devices 
forcing on different protocols. The Distributed 
Core is responsible to maintain the distributed 
data stores, to elect the master controller for 
each network portion and to share information 
with the adjacent layers. The NorthBound 
modules offer an abstraction of the network and 
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the interface for application to interact and 
program the NOS. Finally, the Application layer 
offers a container in which third-party 
applications can be deployed. 

ONOS provides basic platform for 
distributed SDN scenario. Architecture of 
ONOS has been shown in Figure 5. 

 
Figure 5- ONOS Distributed Architecture 

ONOS platform is a multi-module project 
based on instance of Apache Karaf in which 
modules are managed as OSGi bundles. Apache 
Karaf also provides local and remote access to 
ONOS control and a CLI interface. Let’s 
discuss the components shown in Figure 5. 

Network Applications -These applications 
are used to facilitate management across all 
ONOS instances and to enforce policies in the 
network e.g., QoS, Resource allocation etc. It 
provides flexibility by allowing developers to 
make their own custom application suite. 

Northbound APIs - These APIs provide 
abstract view of the network to application 
layer. They provide information related to 
network topology, devices and links. They also 
provide application intent framework to 
network applications. The application intent 
framework allows application to specify high 
level intents without underlying rules i.e they 
need only directions what to do rather than how 
to do”. The intent framework allows an 
application to request a service from the 
network without having to know details of how 
the service will be performed. This allows 
network operators as well as application 
developers to program the network at high 
level; they can simply specify their intent: a 
policy statement or connectivity requirement. 
Some examples of intents: 

• Set up a connection between host A 
and host B 

• Set up an optical path from switch X 
and switch Y with z amount of 
bandwidth 

• Don’t allow host A to talk to host B 
The Intent framework takes such requests 

from all applications, figure out which ones can 
and cannot be accommodated, resolves conflicts 
between applications, applies policies set by an 
administrator, programs the network to provide 
the requested functionality, and delivers the 
requested services to the application. The 
Global Network View provides the application 
with view of the Network – the hosts, switches, 
links, and any other state associated with the 
network such as utilization. An application can 
program this network view through APIs. One 
API lets an application look at the view as a 
network graph. Some examples of what can be 
done with the network graph include: 

• Create simple application to 
calculate shortest paths since the 
application already has a graphical 
view of the network. 

• Maximize network utilization by 
monitoring the network view and 
programming changes to paths to 
adjust load (traffic engineering). 

Distributed Core - This is the core of ONOS 
architecture. Its functions include management 
of topology stores, provision of consistency, 
availability and cluster state management. 
3.2.Environment setup 
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Mininet is a lightweight container 
orchestration system for network emulation. 
With Mininet and onos.py, it can easily start up 
an ONOS cluster, and a modeled data network 
for any topology you might like, in a single VM 
or server. This is usually the most convenient 
way to create an ONOS development 
environment on memory space constraint laptop 
and it can be up and running in a matter of 
minutes (or seconds if have already built ONOS 
and have already installed Mininet). 

Running Mininet on a laptop, use onos.py to 
start up a complete emulated ONOS network in 
a single VM - including ONOS cluster, modeled 
control network, and data network. This 
simplifies development on a laptop, because it 
can run a single development VM (or no VM at 
all since it runs on a Linux machine). Moreover, 
it is more efficient than a multi-VM setup 
because the entire emulated network lives in a 
single VM and shares a single Linux kernel. 
Additionally, onos.py models the control 
network as well as the data network; it is easily 
to change the number of nodes in the ONOS 
cluster, as well as things like the delay or 
bandwidth between nodes in the control 
network. It's even possible to change the control 
network topology as well as the data network 
topology. onos.py provides a single, unified 
console via the mininet-onos> CLI, where it is 
possible to enter both Mininet and ONOS 
commands – this can be very convenient. 
onos.py also automatically handles port 

forwarding , so it can easily connect to the GUI 
(or to karaf, or to the controllers' OpenFlow 
ports) by connecting to ports on the VM. 
onos.py parametrizes both the control network 
(ONOS cluster) and the data network; so it's 
easy to restate over multiple cluster sizes and 
network topologies. 

The basic setup used for the simulation of 
scalability and fault tolerance is described here. 
There are three servers (ONOS instances) 
“onos1”, “onos2” and “onos3” running three 
ONOS cluster OpenFlow controllers. All of 
these OpenFlow controllers are backed by the 
same Titan Graph database running on the same 
server. The machines onos1, onos2 and onos3 
have IP addresses 192.169.123.1, 192.168.123.2 
and 192.168.123.3 respectively. As mentioned 
above mininet is used to simulate the network 
topology. The mininet runs on the ONOS server 
running on host computer. The topology used 
for simulation contains 21 switches and 64 host 
devices. The switches are numbered 
sequentially as s1, s2, s3, s4, s5, s6 and so on. 
The hosts connected to those switches are 
similarly numbered as h1, h2, h3, h4, h5, h6 and 
so on. The hosts have IP addresses assigned 
from 10.0.0.0/24 subnet with the last octet 
representing their host number. For e.g. h1 will 
have an IP address of 10.0.0.1, h2 will have an 
IP address of 10.0.0.2 and so on. The network 
topology that has 64 host and 21 switches is 
running by using the following command show 
in Figure 6. 

sudomn --custom onos.py --controller onos,3 --topo tree,depth=3,fanout=4 

 
Figure 6  representation of the network topology 

On start-up all the switches in the topology 
connects to all ONOS OpenFlow controller 
instances. Even though all the switches connect 
to all the controllers, each switch in the 
topology has one of the controllers as the master 

controller. This is done by per switch master 
election using ovs-vsctl set-controller 
command. onos:balance-mastersONOS 
controller has been run by typing onos on the 
mininet CLI as shown the figure 7 on below
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Figure 7.Running ONOS command window 

From the onos CLI can check how many onos instances (nodes) running by using the command 
nodes as shown below. 

 
Figure 8. Running 3 ONOS nodes 

The above figure8 shows three nodes of 
onos instance running on the same ONOS 
server and their ip addresses are 192.168.123.1, 
192.168.123.2 and 192.168.123.3 respectively. 

And cluster of onos instances can be 
displayed by using GUI as shown below. Color 
key indicates the control mastership mapping of 
forwarding devices with the corresponding 
Control instance node. 

 
Figure 9. The nodes ONOS GUI representation 

The above figure9 shows that all switches 
are connected to one onos instance as a master 
instance and it can be balance the load that 
mean distributed the switch for all onos1, onos2 

and onos3 controllers by using onos:balance-
masters that both instances connected with the 
corresponding color switches as shown the 
figure10. 
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Figure 10. ONOS cluster nodes before the master controller fails 

To test fault tolerance by downing onos1 
using the following command 

onos>onosdown onos1 
Bringing onos1 down… 

After downing onos1 the entire network is 
controlled by onos2 and onos3 instances as 
shown from GUI representation of figure11 
below. 

 
Figure 11. Fault tolerance test displayed on GUI 

 
Figure 12.  ONOS cluster nodes after the master controller fails 

To know the role of the three controllers for each switch in the network on the command 
window show in Figure12. 

 
Figure 13. Role of cluster controller in the network 

As we can see the above figure13 for each 
device in the network topology has their own 
one master and two backup controllers; this 
indicates that when the master controller fail 
one of the backup controller will be master and 

resume the task of the failure controller with the 
up dated data state. 

Leader election for each term of task the 
leader is elected in the cluster member of onos 
instances using the raft algorithm leader 
election procedure that means the most up to-
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date data long term is elected as master 
controller .this can be shown by the following 

figure. 

 
Figure 14. Snapshot of how leader elects for each term 

As we can see from the figure14 above on 
the Topic column lists are the work partition 
and devices that controlled by the elected 
controller, on the term column the listed number 
indicates the log term sequence that the up-to-
date data log entry number and the last column 

indicates the timestamps that the leader 
elected.Communication of the cluster node 
controllers can be checked by using network 
protocol tools called wireshark and we can 
show figure15 the packet transfer among the 
three ONOS nodes as follows 

 
Figure 15. Packet transfer among the three nodes of ONOS cluster using wireshark 

As we can see from the above figure the 
port number between the controllers is 9876 and 
to connect the data plane the controller uses 
6633 port. 
4. Conclusion 

Traditional networks are complex and hard 
to manage. One of the reasons is that the control 
and data planes are vertically integrated and 
vendor specific. Another, concurring reason, is 
that typical networking devices are also tightly 
tied to line products and versions. In other 
words, each line of product may have its own 
particular configuration and management 
interfaces, implying long cycles for producing 
product updates (e.g., new firmware) or 
upgrades (e.g., new versions of the devices). All 
this has given rise to vendor lock-in problems 

for network infrastructure owners, as well as 
posing severe restrictions to change and 
innovation.In this paper was discussed the 
importance of having a distributed SDN 
network, in order to avoid the problem of 
having a single point of failure and also because 
with a distributed system is possible to achieve 
high availability, scalability and, persistency of 
the information. Was also analyzed the behavior 
of the ONOS controller under the cluster 
architecture schema, with the aim of having a 
better understandability of how is acting the 
controller. One of the biggest parts of the work 
was theresearch for the protocols that were 
being used for the network in the 
communication between controllers, in this part 
was also explained the different messages 
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exchanged between controllers. This was 
performed with help of Wireshark, making 
traffic captures along the interfaces involved 
and analyzing the packets with the aim of 
understand the communication. 
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