

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

12

SOFTWARE DEFINED NETWORKING (SDN) CONTROL PLANE

IN EVALUATION FOR RELIABILITY AND FAULT
TOLERANCE

Wondatir Teka Tefera1, Nedumaran Arappali2

1,2Department of Electrical & Computer Engineering, Kombolcha Institute of Technology, Wollo
University, Ethiopia.

Email: 1wonde155@gmail.com, 2maran.van@gmail.com

Abstract: Software-Defined Networking
(SDN) created an opportunity for solving
these long standing problems. Some of the
key ideas of SDN are the introduction of
dynamic programmability in forwarding
devices through open southbound interfaces,
the decoupling of the control and data plane,
and the global view of the network by logical
centralization of the “network brain”. While
data plane elements became dumb, but
highly efficient and programmable packet
forwarding devices, the control plane
elements are now represented by a single
entity, the controller or network operating
system. Applications implementing the
network logic run on top of the ONOS
controller and are much easier to develop
and deploy when compared to traditional
network. The traditional networking
architecture can’t accommodate the advance
user requirements efficiently. Increase of
mobile devices, virtualization, high
automation & security, efficient Big-Data
management and high quality with variety of
services, SDN is a promising architecture.
For sure current network is not dynamic if
compared to SDN. Though yet SDN, needs
some time to mature and industry also need
time to synchronize the devices according to
it. SDN can also manage optical and wireless
networks fruitfully. To understand why SDN
will play a critical role in future in shaping
various technologies, we have to think what
actually SDN providing us apart from all
technical advances? SDN gives user or
operator a feel of nearness to the network.
He won’t feel that he is a distinct entity when

operating on SDN based networks. Hence it
is true to say that future networks will
revolve around SDN based networking.
Keywords: SDN Network; ONOS Controller;
Protocols; Big-Data; Fault tolerance.
1. Introduction
The simplicity in the Internet's design has led to
a tremendous innovation in the Internet, but the
network itself remains quite hard to change and
surprisingly difficult to manage. The root cause
of this problem in a traditional network lies
primarily in the complicated control plane
running on top of all switches and routers
throughout the network. These networking
devices are manufactured by different network
vendors and used trademarked protocols to
control the data plane. In these devices,
proprietary firmware on the control plane of the
switch determines where packets of data are
forwarded by the data plane. Distributed
optimization of network control was inherently
difficult since control plane was a part of
individual network devices. Software Defined
Networking (SDN) is a relatively new approach
to computer networking which evolved from
some preliminary research and work done at
UC Berkeley and Stanford University in 2005.
SDN introduces a layer of software between
bare metal network components and the
network administrators who configure and set
them. This software layer gives network
administrators an opportunity to make their
network device adjustments through a software
interface instead of having to manually
configure hardware and actually physically
access network devices giving them a very good
control over their networks show in Figure 1

.

mailto:wonde155@gmail.com
mailto:maran.van@gmail.com

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

13

Figure 1 Data and Control plane in traditional networking hardware

This is achieved by decoupling the system
that makes decisions about where traffic is sent
(the control plane) from the underlying systems
that forwardstraffic to the selected destination
(the data plane). SDN adheres to open standards
and is vendor-neutral, i.e. it can theoretically
operate with any vendor's network hardware.
This gives organizations the ability to avoid
vendor lock-in for a host of network products.

Most current SDN deployments currently
rely on a single SDN controller. However, as
the number and size of production networks
deploying OpenFlow increases, relying on a
single controller for the entire network might
not be feasible for several reasons. First, the
amount of control traffic destined towards the
centralized controller grows with the number of
switches. Second, since the system is bound by
the processing power of that single controller,
low setup times can grow significantly as
demand grows with the size of the network.
This clearly introduces a serious limitation on
the scalability and fault tolerance of the
controller. The paper aspire to design and build
an open source, database backed scalable and
fault tolerant OpenFlow controller. The
controller is intended to be used for rapid
prototyping and research environments.
2. Related work

To evaluate reliability and fault tolerance of
control plane architecture we have to review the
previous works that have been done related to
fault tolerance. We can see these works by
dividing in to three sections depending on their
control plane scenarios (centralized,
hierarchical, and fully distributed) will be
discussed as follows.

Logical centralization of the network
control plays a central role in SDN architecture.
Initial efforts towards implementing such
architecture focused on its feasibility in real

world scenarios (e.g. campus networks) and on
identifying benefits over traditional approaches.
Initial designs leveraged the use of single
controller deployments, relying on the now-
standard OpenFlow protocol. Later, other
designs have been developed and released [1, 2,
3]. However, most of them do not provide a
very well defined northbound API, nor attempt
to shield the application developer from dealing
with certain low-level mechanisms of
OpenFlow. Recent work provides interesting
conclusions interms of centralized controller
performance. In [5] show that, with minor code
optimizations and a redesign of the controller
structure to support multi-threaded parallelism,
one can drastically improve throughput and
reduce latency on a centralized, single machine
controller. Via these optimizations, it has been
possible to implement controllers capable to
process up to 12 million packet-in messages per
second. The research community often argues
that, despite the advancements in single
controller processing capabilities, it is still not
enough to meet the performance, scalability and
resiliency requirements of large scale
production environments [5]. The intrinsic
limitations of this type of design, such as
increased latency to forwarding devices in large
networks and difficulty in handling large
network state, have motivated the development
of distributed control plane designs.

Hierarchical control planes are developed
around the idea that control instances should
have different roles in the control process.
Kandoo [6] explicitly separates control among
two different layers of controllers. The top layer
is composed of a root controller. It is
responsible for maintaining global network
policies and pushing those down to the bottom
layer controllers. The bottom layer is comprised
of local controllers. These controllers directly

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

14

configure the network forwarding devices, and
share their perceived network state with the root
controller. This approach has the direct benefit
of simplifying the presentation of the Global
Network View to control applications at the
root controller. However, it requires the
development and maintenance of one type of
controller for each control plane layer. The root
controller introduces concerns as it represents a
single point of failure, since it is required to
deal with constant network updates. Moreover,
it has to operate on an eventually consistent
network state, since it can only perceive state
that is reported by local controllers. Design is
somewhat limited in applicability, being more
favorable in low latency environments like data
centers, where traffic locality can be well
explored in most cases. [7] Presents Difane, a
solution for network control in which so-called
Authority Switches are assigned the role of
forwarding rule caches – much in line with what
the local controllers illustrated previously
perform in Kandoo.
2.1. General Objectives

The general objective of this thesis is to
evaluate reliability and fault tolerance of SDN
control plane architecture which is important to
customize and use SDN service provider
network operating system instead of the current
traditional service provider networking systems.
2.2.Specific Objectives
The specific objectives of this paper will be to:
 Select best controller architecture

deployment that will be distributed and
fault tolerance controller

 Detail analysis on distributed and fault
tolerance cluster control plane
architecture

 How to coordinate primary and backup
controllers

 Simulate and evaluate the fault tolerance
of distributed ONOS cluster controller
using Mininet emulator.

2.3.Methodology
There are steps to evaluate the reliability

and fault tolerance of SDN control plane. These
steps are important to make this thesis
successfully. The first step will be understood
the principles and features of SDN comparing
with the traditional network existing on the time
being now. The second step will be analysis of
Openflow SDN controller platform focusing on
their control plane architecture and review
different Openflow controller based on their
control plane architecture (centralized and
distributed). And then select the best controller
that has distributed control plane architecture, it
will be reliable and fault tolerant. Finally
analyze the selected SDN controller with
respect to its reliability and fault tolerance by
simulating its fault tolerance and reliability
using simulation software.
2.4.Architecture of Software Defined

Networking (SDN)
An SDN can be logically divided into three

different layers. The infrastructure layer refers
to the actual forwarding hardware. This layer
consists of network devices such as Layer 2
switches in a LAN centric environment. The
control layer, also known as the SDN controller
is where the real intelligence of a Software
Defined Network is situated. This layer
implements the basic network services which
can be used by various networking applications
in the application layer. The switches that are
located in the infrastructure layer are not
traditional network switches. These switches
need to support some mechanism whereby the
control layer can talk to and program the
switches in the infrastructure layer.
In SDN architecture, southbound application
program interfaces (APIs) are used to
communicate between the SDN Controller and
the switches of the network. They can be open
or proprietary. The most popular and well
known southbound interface is the OpenFlow
protocol.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

15

Figure 2. Architecture of a Software Defined Network

The northbound application programming
interface (API) on a SDN control layer enables
application layer to program the network and
request services from it shows in Figure 2. The
Northbound API is evolving rapidly but
currently there are no standards for it. Each
OpenFlow controller provides their own set of
interfaces.

How networks are currently structured
and operated poses a significant financial issue
to Internet service providers and, in fact, has
become a handicap for progress in the cloud and
service provider space. SDN [13] enables a
programmable network control and offers a
solution to a variety of use cases. The success
stories of these bottom-up SDN solutions have
led to a shift in the way operators and vendors
perceive the network. In the following, we
define four basic principles of SDN. Each of
these principles is mandatory for classifying a
technology as SDN.

The physical separation of control- and
forwarding- or data plane is the best known
principle of SDN [14, 15]. It postulates the
externalization of the control plane from a
network device to an external control plane
entity often called the “controller”. In particular,
this means that an internal software control
plane, while it may still exist, is not enough to
brand a device or technology as “Software
Defined Networking”. The external controller
has to have the ability to change the forwarding
behavior of the network element directly. This
enables several key benefits of SDN. Control-
and data plane can be developed separately
from each other, which lowers the entry-to-
market barrier, as a company no longer has to
have expert knowledge in both areas. Moreover,
the externalization of a software-based

controller produces pressure on established
hardware switch vendors, which are reduced to
providing forwarding hardware only. This has
already introduced new and disruptive start-ups
to the market that have speed up innovation in
the network. Even the market leader Cisco has
reacted to this trend by introducing its own
flavor of SDN with the Application Centric
Infrastructure concept developed at the Spin-In
company “Insieme” [16]. Customers are also
enabled to “mix-and-match” products of
different vendors and thus increase competition
further. The switch vendors have reacted to that
shift by forming the OpenDaylight project for
an open SDN software platform. Challenges in
this area are to find the appropriate control
protocol for the specific scenario out of
different protocols and protocol versions, and
the appropriate forwarding elements which
support this protocol.

The fundamental paradigm shift in
networking caused by SDN is represented by
the introduction of network programmability.
This is enabled by the external software
controller and the open interfaces. The
programmability principle is not limited to
introducing new network features to the control
plane but rather represents the ability to treat the
network as a single programmable entity instead
of an accumulation of devices that have to be
configured individually. SDN can thus be
regarded as a very suitable complement to
network virtualization providing the control
plane for an easy operation („programming‟)
of, e.g., virtual networks in network substrates
or to control specific flows within a virtual
network as possible applications. Here it is
essential to find the appropriate abstraction
level, which determines on the one hand the

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

16

ease-of-use for network programmers and on
the other hand the abstraction overhead and
there with possible performance degradation.
2.5. The OpenFlow Architecture

OpenFlow(OF) is considered the pioneer
SDN standard. This protocol enabled the
controller to interact directly with the
underlying devices (both physical and virtual),

making the SDN adapt to changing application
requirements. The controller could set rules
about forwarding behaviors of each device
through the OF protocol like modify, drop, en-
queue and forward a packet belonging to
particular flow. The working of the OF protocol
can be explained with the Figure 3.

Figure 3 - OpenFlow Architecture

Every switch in the network has its own set
of flow tables. Furthermore these tables consist
of flow entries. A flow entry can be seen as the
forwarding/routing rules. It has three key
components: a bit pattern indicating the flow’s
properties, a list of commands, and a set of
counters. Whereas a flow is the set of packets
that match a particular flow entry. Figure 2.5(a)
displays the main components of an OpenFlow-
based network and the decision making process
an incoming packet goes through. Thus when a
packet arrives at the switch it can undergo one
of the following scenarios:

1. The packet is a match to a flow entry in
the switch’s set of flow table and is then
forwarded according to the rules of that
particular entry.

2. The packet is a match but there are no
actions associated with that flow entry, thus the
packet is dropped.

3. The packet is not a match, and is queued
with an inquiry being sent to the controller, to
which the controller replies with a new
OpenFlow entry resulting in future packets to
be handled by the switch itself.

As mentioned in the above section
OpenFlow protocol is the most popular and
widely accepted protocol for the southbound
Application Programming Interface. OpenFlow
protocol intends to provide access to the data
plane of the switches. It does this by specifying

a language that a switchcan recognize and use
to update its forwarding tables. OpenFlow is a
language for generically defining characteristics
of a particular flow of traffic and a set of actions
to be executed when the switch encounters
packets that matches such characteristics. The
actual mechanisms used to program flows into
switch hardware very greatly depending on the
vendor of the particular hardware. Instead,
OpenFlow provides a way to describe desired
flow state within an agent running locally on the
forwarding device. All switches that are
OpenFlow enabled will have the OpenFlow
agent that will interpret the OpenFlow
commands. The OpenFlow specification also
includes ways for the OpenFlow controller,
which is remote and located in the control plane
to make modifications to this information. The
OpenFlow agent, armed with the flow
information programmed into it by a controller,
acts like the control plane on traditional
switches. The only difference is that it does not
have to run routing protocols, or make decisions
locally. All the decisions are made by the
remote OpenFlow controller and the OpenFlow
agent stores these OpenFlow entries, and pushes
them into the flow tables on the hardware
device. Figure 4 shows an idealized OpenFlow
switch where the flow table is controlled by a
remote OpenFlow controller

.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

17

Figure 4 - Idealized OpenFlow Switch

The OpenFlow controller has a unified view
of the whole network. It runs the routing or
switching protocols to collect the relevant
routing or switching information. There are two
different ways in which the OpenFlow
controller can program the switches in the
network.

The first packet of each new flow can
trigger the controller to insert flow entries down
to the switches and the switch makes efficient
use of flow table where every flow needs small
additional flow setup time. The other approach
is that the flow tables in switch can be pre
populated by the OpenFlow controller ahead of
time for all traffic matches that could come into
the switch. By predefining all the flows and
actions ahead of time in the switch flow tables,
the packets can beforwarded at line rate as this
approach does not require any additional flow
setup time per individual flow.

The interface that connects each network
device to a controller is named the OpenFlow
channel. This is the interface that is used by the
controller to manage and configure the
underling switches, and vice versa receiving
messages from the switches. Similarly the
switches use it denote a packet arrival, switch
state change or any update e.g., alarms. Thus
the OF protocol messages can be categorized
into three types [18].

• Controller to Switch Messages
 These types of messages are
initiated by the controller and are
employed to directly manage,
configure or inquire status of the
devices underneath.

• Asynchronous Messages
These are the messages initiated

by the switches (without the
controller asking) to notify a packet
arrival, to give error messages or any
changes in their state.

• Symmetric Messages

These can be initiated both by
the switch and the controller and
could be used for sending
connection establishment messages
(hello/echo messages) or for testing
latency.

There are two types of approaches used by
the switches to deal with a packet. Either switch
forwards to controller a message called Packet.
In which contains complete packet or sends
some information of the header to get routing
information. In this case the switch needs to
have a buffer to store the packet otherwise it
gets discarded. The variable packet sizes can be
observed in open flow channel. This packet size
can vary from 66 Bytes Hello message to 1500
Bytes data packet. The symmetric messages are
sent periodically to check the existence of
device. The frequency of routing queries
depends on flow arrivals, departures and idle
flow removals.
3. Result and Discussion
3.1.OPEN NETWORK OPERATING

SYSTEM (ONOS)
As we have seen trade-offs of the control

plane architecture of OpenFlow controllers in
chapter two, ONOS meets the optimum
requirements of trade-offs between correctness,
availability, and consistency by having both
eventually and strong consistency model
algorithms. It is important to select ONOS as
service provider network operating systems.
ONOS is built to provide high availability
(HA), scale-out, and performance for these
networks demands. The Southbound modules
manage the physical topology, react to network
events and program/configure the devices
forcing on different protocols. The Distributed
Core is responsible to maintain the distributed
data stores, to elect the master controller for
each network portion and to share information
with the adjacent layers. The NorthBound
modules offer an abstraction of the network and

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

18

the interface for application to interact and
program the NOS. Finally, the Application layer
offers a container in which third-party
applications can be deployed.

ONOS provides basic platform for
distributed SDN scenario. Architecture of
ONOS has been shown in Figure 5.

Figure 5- ONOS Distributed Architecture

ONOS platform is a multi-module project
based on instance of Apache Karaf in which
modules are managed as OSGi bundles. Apache
Karaf also provides local and remote access to
ONOS control and a CLI interface. Let’s
discuss the components shown in Figure 5.

Network Applications -These applications
are used to facilitate management across all
ONOS instances and to enforce policies in the
network e.g., QoS, Resource allocation etc. It
provides flexibility by allowing developers to
make their own custom application suite.

Northbound APIs - These APIs provide
abstract view of the network to application
layer. They provide information related to
network topology, devices and links. They also
provide application intent framework to
network applications. The application intent
framework allows application to specify high
level intents without underlying rules i.e they
need only directions what to do rather than how
to do”. The intent framework allows an
application to request a service from the
network without having to know details of how
the service will be performed. This allows
network operators as well as application
developers to program the network at high
level; they can simply specify their intent: a
policy statement or connectivity requirement.
Some examples of intents:

• Set up a connection between host A
and host B

• Set up an optical path from switch X
and switch Y with z amount of
bandwidth

• Don’t allow host A to talk to host B
The Intent framework takes such requests

from all applications, figure out which ones can
and cannot be accommodated, resolves conflicts
between applications, applies policies set by an
administrator, programs the network to provide
the requested functionality, and delivers the
requested services to the application. The
Global Network View provides the application
with view of the Network – the hosts, switches,
links, and any other state associated with the
network such as utilization. An application can
program this network view through APIs. One
API lets an application look at the view as a
network graph. Some examples of what can be
done with the network graph include:

• Create simple application to
calculate shortest paths since the
application already has a graphical
view of the network.

• Maximize network utilization by
monitoring the network view and
programming changes to paths to
adjust load (traffic engineering).

Distributed Core - This is the core of ONOS
architecture. Its functions include management
of topology stores, provision of consistency,
availability and cluster state management.
3.2.Environment setup

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

19

Mininet is a lightweight container
orchestration system for network emulation.
With Mininet and onos.py, it can easily start up
an ONOS cluster, and a modeled data network
for any topology you might like, in a single VM
or server. This is usually the most convenient
way to create an ONOS development
environment on memory space constraint laptop
and it can be up and running in a matter of
minutes (or seconds if have already built ONOS
and have already installed Mininet).

Running Mininet on a laptop, use onos.py to
start up a complete emulated ONOS network in
a single VM - including ONOS cluster, modeled
control network, and data network. This
simplifies development on a laptop, because it
can run a single development VM (or no VM at
all since it runs on a Linux machine). Moreover,
it is more efficient than a multi-VM setup
because the entire emulated network lives in a
single VM and shares a single Linux kernel.
Additionally, onos.py models the control
network as well as the data network; it is easily
to change the number of nodes in the ONOS
cluster, as well as things like the delay or
bandwidth between nodes in the control
network. It's even possible to change the control
network topology as well as the data network
topology. onos.py provides a single, unified
console via the mininet-onos> CLI, where it is
possible to enter both Mininet and ONOS
commands – this can be very convenient.
onos.py also automatically handles port

forwarding , so it can easily connect to the GUI
(or to karaf, or to the controllers' OpenFlow
ports) by connecting to ports on the VM.
onos.py parametrizes both the control network
(ONOS cluster) and the data network; so it's
easy to restate over multiple cluster sizes and
network topologies.

The basic setup used for the simulation of
scalability and fault tolerance is described here.
There are three servers (ONOS instances)
“onos1”, “onos2” and “onos3” running three
ONOS cluster OpenFlow controllers. All of
these OpenFlow controllers are backed by the
same Titan Graph database running on the same
server. The machines onos1, onos2 and onos3
have IP addresses 192.169.123.1, 192.168.123.2
and 192.168.123.3 respectively. As mentioned
above mininet is used to simulate the network
topology. The mininet runs on the ONOS server
running on host computer. The topology used
for simulation contains 21 switches and 64 host
devices. The switches are numbered
sequentially as s1, s2, s3, s4, s5, s6 and so on.
The hosts connected to those switches are
similarly numbered as h1, h2, h3, h4, h5, h6 and
so on. The hosts have IP addresses assigned
from 10.0.0.0/24 subnet with the last octet
representing their host number. For e.g. h1 will
have an IP address of 10.0.0.1, h2 will have an
IP address of 10.0.0.2 and so on. The network
topology that has 64 host and 21 switches is
running by using the following command show
in Figure 6.

sudomn --custom onos.py --controller onos,3 --topo tree,depth=3,fanout=4

Figure 6 representation of the network topology

On start-up all the switches in the topology
connects to all ONOS OpenFlow controller
instances. Even though all the switches connect
to all the controllers, each switch in the
topology has one of the controllers as the master

controller. This is done by per switch master
election using ovs-vsctl set-controller
command. onos:balance-mastersONOS
controller has been run by typing onos on the
mininet CLI as shown the figure 7 on below

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

20

Figure 7.Running ONOS command window

From the onos CLI can check how many onos instances (nodes) running by using the command
nodes as shown below.

Figure 8. Running 3 ONOS nodes

The above figure8 shows three nodes of
onos instance running on the same ONOS
server and their ip addresses are 192.168.123.1,
192.168.123.2 and 192.168.123.3 respectively.

And cluster of onos instances can be
displayed by using GUI as shown below. Color
key indicates the control mastership mapping of
forwarding devices with the corresponding
Control instance node.

Figure 9. The nodes ONOS GUI representation

The above figure9 shows that all switches
are connected to one onos instance as a master
instance and it can be balance the load that
mean distributed the switch for all onos1, onos2

and onos3 controllers by using onos:balance-
masters that both instances connected with the
corresponding color switches as shown the
figure10.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

21

Figure 10. ONOS cluster nodes before the master controller fails

To test fault tolerance by downing onos1
using the following command

onos>onosdown onos1
Bringing onos1 down…

After downing onos1 the entire network is
controlled by onos2 and onos3 instances as
shown from GUI representation of figure11
below.

Figure 11. Fault tolerance test displayed on GUI

Figure 12. ONOS cluster nodes after the master controller fails

To know the role of the three controllers for each switch in the network on the command
window show in Figure12.

Figure 13. Role of cluster controller in the network

As we can see the above figure13 for each
device in the network topology has their own
one master and two backup controllers; this
indicates that when the master controller fail
one of the backup controller will be master and

resume the task of the failure controller with the
up dated data state.

Leader election for each term of task the
leader is elected in the cluster member of onos
instances using the raft algorithm leader
election procedure that means the most up to-

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

22

date data long term is elected as master
controller .this can be shown by the following

figure.

Figure 14. Snapshot of how leader elects for each term

As we can see from the figure14 above on
the Topic column lists are the work partition
and devices that controlled by the elected
controller, on the term column the listed number
indicates the log term sequence that the up-to-
date data log entry number and the last column

indicates the timestamps that the leader
elected.Communication of the cluster node
controllers can be checked by using network
protocol tools called wireshark and we can
show figure15 the packet transfer among the
three ONOS nodes as follows

Figure 15. Packet transfer among the three nodes of ONOS cluster using wireshark

As we can see from the above figure the
port number between the controllers is 9876 and
to connect the data plane the controller uses
6633 port.
4. Conclusion

Traditional networks are complex and hard
to manage. One of the reasons is that the control
and data planes are vertically integrated and
vendor specific. Another, concurring reason, is
that typical networking devices are also tightly
tied to line products and versions. In other
words, each line of product may have its own
particular configuration and management
interfaces, implying long cycles for producing
product updates (e.g., new firmware) or
upgrades (e.g., new versions of the devices). All
this has given rise to vendor lock-in problems

for network infrastructure owners, as well as
posing severe restrictions to change and
innovation.In this paper was discussed the
importance of having a distributed SDN
network, in order to avoid the problem of
having a single point of failure and also because
with a distributed system is possible to achieve
high availability, scalability and, persistency of
the information. Was also analyzed the behavior
of the ONOS controller under the cluster
architecture schema, with the aim of having a
better understandability of how is acting the
controller. One of the biggest parts of the work
was theresearch for the protocols that were
being used for the network in the
communication between controllers, in this part
was also explained the different messages

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-9, 2020

23

exchanged between controllers. This was
performed with help of Wireshark, making
traffic captures along the interfaces involved
and analyzing the packets with the aim of
understand the communication.
References
1) MCCAULEY, J. POX: A Python-based

OpenFlow Controller.
2) http://www.noxrepo.org/pox/about-pox/.

2014. Available from Internet:
3) ERICKSON, D. The beacornopenflow

controller. In: ACM. Proceedings of the
second ACM SIGCOMM workshop on Hot
topics in software defined networking.
[S.l.], 2013. p. 13–18.

4) Ryu SDN Framework Community. RYU
network operating system. 2015. Available
from Internet:

5) SoftwareDefinedNetworking:TheNewNorm
forNetworks.Available:https://www.opennet
working.org/images/stories/downloads/sdn-
resources/whitepapers/wp-sdn-newnorm.pdf

6) TOOTOONCHIAN, A.; GANJALI, Y.
HyperFlow: A Distributed Control Plane for
OpenFlow. In: USENIX INM/WREN. [S.l.:
s.n.], 2010.

7) YEGANEH, S. H.; GANJALI, Y. Beehive:
Towards a Simple Abstraction for Scalable
Software-Defined Networking. In:
Proceedings of the 13th ACM Workshop on
Hot Topics in Networks. New York, NY,
USA: ACM, 2014. (HotNets-XIII), p. 13:1–
13:7. ISBN 978-1-4503-3256-9. Available
from Internet.

8) YU, M. et al. Scalable Flow-based
Networking with DIFANE. In: ACM
SIGCOMM. [S.l.: s.n.], 2010.

9) A. R. Curtis et al. DevoFlow: scaling flow
management for high-performance
networks. ACM SIGCOMM CCR, New
York, NY, USA, v. 41, n. 4, 2011. ISSN
0146-4833

10) LEVIN, D. et al. Logically centralized?:
state distribution trade-offs in software
defined networks. In: HotSDN. [S.l.]: ACM,
2012. ISBN 978-1-4503-1477-0.

11) Amin Tootoonchian,
YasharGanjaliHyperFlow: A Distributed
Control Plane for OpenFlow

12) TeemuKoponen, Martin Casado, Natasha
Gude, Jeremy Stribling, Leon
Poutievskiy,MinZhuy, Rajiv Ramanathan,
YuichiroIwataz, Hiroaki Inouez, Takayuki
Hamaz, Scott Shenker. Onix: A Distributed

Control Platform for Large- scale
Production Networks.

13) H. Kim et al. CORONET: Fault tolerance
for software defined networks. In IEEE
ICNP, 2012.

14) T. D. Nadeau and K. Gray, SDN: Software
Defined Networks. Media, 2013.

15) M. Jarschel, F. Wamser, T. Höhn, T. Zinner,
and P. Tran-Gia, “SDN-based Application-
Aware Networking on the Example of
YouTube Video Streaming,” in Proceedings
of the 2nd European Workshop on Software
Defined Networks (EWSDN 2013), Berlin,
Germany, October 2013, pp. 87–92.

16) J. Duffy, “Cisco takes fight to SDNs with
bold Insieme launch,”
http://www.networkworld.com/news/2013/1
10613-cisco-insieme- 275666.html,
November 2013, last accessed on
2014.03.06.

17) G. Hampel, M. Steiner, and T. Bu,
“Applying software-defined networking to
the telecom domain,” in Proceedings of 16th
IEEE International Global Internet
Symposium (GI 2013) collocated with IEEE
INFOCOM 2013, Turin, Italy, April 2013,
pp. 133–138.

18) OpenFlowSwitchSpecificationv1.3.1.Av
at:https://www.opennetworking.org/images/
stories/downloads/sdnresources/onfspecifica
tions/openflow/openflow-spec-v1.3.1.pdf

19) B. et al. Pfaff. OpenFlow Switch
Specification Version 1.3.0 Implemented
(Wire Protocol 0x04).J. O. Diego Ongaro,
"In Search of an Understandable Consensus
Algorithm," Stanford University, 2014.

20) J UNQUEIRA , F. P., R EED , B. C., AND
S ERAFINI , M. Zab: high-performance
broadcast for primary-backup systems. In
Proc. DSN‟11, IEEE/IFIP Conference on
Dependable Systems and Networks (2011),
IEEE, pp. 245–256. 2, 137, 149.

