

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-6, 2020

52

SURVEY ON OBJECT ORIENTED SYSTEM METRICATION

USING VARIOUS REAL TIME SIMULATIONS
Dr. S. Pasupathy

Associate Professor
 Department of Computer Science and Engineering Annamalai University

Annamalainagar, Tamil Nadu, India

Abstract – This paper affords the
consequences evaluated from our observe on
metrics utilized in object oriented software
layout strategies. This supplies device-
established metrics consequences and has
even implications on the effects of analyses
based totally on those metrics consequences.
The manner gives a practical, systematic,
begin-to-end method of selecting, designing
and imposing software program metrics.
These metrics have been evaluated using
object orientated metrics tools for the cause
of reading first-class of the product,
encapsulation, inheritance, message passing,
polymorphism, reusability and complexity
measurement. It defines a ranking of the
lessons which can be maximum important
note down and maintainability. The
outcomes may be of top notch assistance to
best engineers in selecting the right set
metrics for his or her software program
projects and to calculate the metrics, which
became developed the use of a chronological
object orientated existence cycle technique.
Key Terms - Object oriented paradigm,
Object Oriented Metrics, Data Collection
and Software Quality Estimation

I. INTRODUCTION
In Recent years the object oriented layout
concepts are broadly used for growing properly
high-quality of product. The use of object
orientated software program development
strategies introduces new element to software
program complexity dimension and set of
mechanisms are used to evaluate item oriented
ideas. This massive variety of equipment lets in
a consumer to choose the device best proper,
e.g., depending on its coping with, device help,
or rate. However, this assumes that each one

metrics tools compute / interpret / enforce the
equal metrics in the equal way.

For this work, we expect that a software
program metric (or metric in short) is a
mathematical definition mapping the entities of
a software device to numeric metrics values.
Furthermore, we apprehend a software metrics
tool as a program which implements a fixed of
software metrics definitions. It permits to assess
a software device in keeping with the metrics
via extracting the required entities from the
software program and offering the
corresponding metrics values. It combines
software metrics values in a properly-described
way to aggregated numerical values to be able
to resource exceptional evaluation and
evaluation. As regards the studies in software
metrics, it has passed through a awesome
evolution: inside the first period the point of
interest became very much on inventing new
metrics for the special attributes of software,
without a lot regard for the scientific validity of
the metrics [1,2] . In latest instances as a
substitute, quite a few works has been carried
out on a way to practice the theory of dimension
to software program metrics and the way to
make certain their validity.

These Metrics try to seize distinct components
of software program product and its procedure.
Some of the metrics also try and capture the
same components of software. e.g There are
some of metrics to degree the coupling among
specific training. The remainder of these papers
is shape as follows: Section 2 describes the goal
of this work and specify the how to evaluate the
performance. Section three describes various
object orientated metrics. Section 4 describes
the comparison consequences of various

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-6, 2020

53

applications. Section four and Section 5
specifies the experimental outcomes and our
interpretations for the two major questions
respectively. In Section 7, we talk threats to the
validity of our look at. Finally, in Section 8, we
conclude our findings and speak destiny
paintings.

II. METRICS MEASUREMENT
Metrics are units of dimension. The term
"metrics" is likewise often used to mean a fixed
of unique measurements taken on a selected
object or manner. Software engineering metrics
are units of dimension which are used to
characterize: [3, 4, 5]

• Software engineering merchandise, e.g.,
designs, supply code, and test instances,

• Software program engineering tactics,
e.g., the sports of evaluation, designing,
and coding, and

• Software program engineering people,
e.g., the performance of an character
tester, or the productivity of an character
designer.

If used properly, software engineering metrics
can allow us to:

• Quantitatively outline fulfillment and
failure, and/or the degree of success or
failure, for a product, a method, or
someone

• Identify and quantify improvement, loss
of development, or degradation in our
products, procedures, and people

• Make significant and beneficial
managerial and technical selections

• Pick out developments

• Make quantified and meaningful
estimates

Over the years, I even have observed some not
unusual developments amongst software
engineering metrics. Here are some
observations: [10, 12]

• A unmarried software program
engineering metric in isolation is seldom
beneficial. However, for a selected
method, product, or character, three to 5
nicely-chosen metrics seems to be a
realistic higher restrict, i.e., additional
metrics (above five) do not usually offer
a sizeable return on funding.

• Although a couple of metrics must be
collected, the maximum beneficial set of
metrics for a given character, system, or
product might not be known in advance
of time. This means that, when we first
start to examine a few component of
software program engineering, or a
selected software program task, we are
able to possibly must use a large (e.g.,
20 to 30, or extra) range of various
metrics. Later, Evaluation has to factor
out the most beneficial metrics [11].

• Metrics are nearly continually
interrelated. Specifically, tries to
persuade one metric typically have an
effect on different metrics for the same
person, process, or product.

• To be useful, metrics need to be
amassed systematically and regularly --
preferably in an automated way.

• Metrics need to be correlated with truth.
This correlation need to take vicinity
before meaningful choices, primarily
based on the metrics, can be made.

• Faulty evaluation (statistical or
otherwise) of metrics can render metrics
vain, or even dangerous.

• To make meaningful metrics-based
comparisons, each the similarities and
dissimilarities of the people, procedures,
or products being compared need to be
recognized.

• Those collecting metrics need to be
privy to the gadgets that can affect the
metrics they are collecting. For example,
there are the "terrible h's," i.e., the

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-6, 2020

54

heisenberg effect and the hawthorne
effect.

• Metrics may be dangerous. More
properly, metrics may be misused.

• Object-orientated software engineering
metrics are units of dimension that are
used to symbolize:

• Item-orientated software engineering
merchandise, e.g., designs, source code,
and take a look at cases,

• Object-orientated software program
engineering approaches, e.g., the sports
of analysis, designing, and coding, and

• Object-oriented software engineering
people, e.g., the efficiency of an person
tester, or the productivity of an
individual clothier.

III. STEPS IN OBJECT ORIENTED

METRICS EVALUATION
Based on all the possible software program
entities and all the feasible attributes of every of
these entities, there are multitudes of feasible
software metrics. How can we pick the metrics
which can be right for our agencies? The first 4
steps defined on this paper will illustrate how to
identify metrics clients and then utilize the
goal/query/metric paradigm to pick out the
software metrics that healthy the records desires
of these clients. Steps five-10 present the
technique of designing and tailoring the chosen
metrics, along with definitions, models,
counting criteria, benchmarks and objectives,
reporting mechanisms, and further qualifiers.
The ultimate two steps deal with
implementation problems, including
information collection and the minimization of
the impact of human factors on metrics.

The metrics provided hereinafter have been
selected from metrics proposed specially for
object–oriented measurements and cannot be
carried out to another programming fashion.
This is a small fraction of the maximum
properly-know metrics analyzed in our
laboratory (because of the gap barriers of this

paper). The categories selected to provide the
metrics are not defining a metrics category
however used truly to ease the presentation and
now and again a metric may also fall in multiple
categories. The metrics offered are:
magnificence related metrics, technique related
metrics, and inheritance metrics, metrics
measure coupling and metrics measure
preferred (system) software program
manufacturing traits. They are sorted
alphabetically, consistent with the codes, as
follows.

Fig. 1: Flow chart for Analysis Domain.

IV. OBJECT ORIENTED METRICS
Just as we generally need to decide the load,
quantity, and dynamic flight characteristics of a
developmental aircraft as a part of the making
plans procedure, you need to determine how
plenty software to build. One of the principle
reasons software applications fail is our lack of
ability to accurately estimate software length.
Because we nearly continually estimate size too
low, we do now not competently fund or allow
enough time for improvement. Poor length
estimates are generally on the heart of value and
time table overruns.
Table 1. Metrics for Object Oriented Software
S.
No

Object Oriented
Metrics

Attributes

1 Number of classes Class
2 Number of Methods Class
3 Lines of codes Size
4 Weighted Methods

per Class
Class

5 Coupling Between Coupling

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-6, 2020

55

Object
6 Depth of Inheritance Inheritance
7 Number of Children Inheritance
8 Number of Packages Class
9 Coupling Factor Coupling
10 Reuse Ratio Reuse
11 Specialization

Ration
Reuse

12 Polymorphism factor Polymorphism
13 Number of loop Size
14 Number of bugs Class
15 Method of Hiding

Factor
Encapsulation

16 Attribute Hiding
Factor

Encapsulation

17 Message Passing
Call for Factor

Message
Passing

18 Number of
Attributes per class

Size

19 Response for a class Size
20 Lack of cohesion in

method
Cohesion

V. SOFTWARE ESTIMATION
A. Metrics Estimation
a) Metrics must be understandable to be useful
For example, lines-of-code and function points
are the Most commonplace, universal measures
of software size with which software engineers
are maximum familiar. Metrics must be
comparatively cheap. Metrics need to be
available as a natural by-product of the
paintings itself and vital to the software
program improvement process. Studies imply
that approximately five% to ten% of general
software program improvement expenses can be
spent on metrics. The large the software
application, the more valuable the funding in
metrics becomes. Therefore, do no longer waste
programmer time by using requiring uniqueness
records collection that interferes with the coding
venture. Look for equipment that may acquire
maximum information on an unobtrusive
foundation. Metrics ought to be well timed.
Metrics need to be to be had in time to impact
change in the improvement technique.

If a size isn't always to be had until this system
is in deep hassle it has no fee. Metrics need to
give proper incentives for technique
improvement. High scoring groups are pushed
to enhance performance when developments of

growing development and past successes are
quantified. Conversely, metrics information has
to be used very cautiously throughout contractor
performance opinions. A bad performance
assessment, based on metrics records, can cause
terrible authorities/industry operating
relationships. Metrics must be calmly spaced
throughout all phases of improvement. Effective
measurement adds fee to all lifestyles cycle
sports. Metrics need to be beneficial at a couple
of ranges. They should be significant to both
management and technical group contributors
for technique improvement in all sides of
improvement.

VI. PERFORMANCE MATCHING
A. Object Oriented Metrics in Software
Engineering Approach
Given the principal role that software
improvement plays in the transport and
application of records technology, managers are
increasingly more that specialize in technique
improvement in the software program
development region. This demand has spurred
the availability of a number of new and/or
advanced strategies to software development,
with possibly the maximum outstanding being
object-orientation (OO). In addition, the focal
point on process development has improved the
demand for software program measures, or
metrics.

B. Applying and Interpreting Object Oriented
Metrics
Object-oriented design and development is
becoming very famous in latest software
program improvement environment. Object
oriented development calls for now not handiest
a extraordinary approach to layout and
implementation, it requires a one-of-a-kind
approach to software program metrics. Since
item orientated technology uses items and now
not algorithms as its essential building blocks,
the method to software metrics for item
orientated applications need to be distinct from
the standard metrics set. Some metrics are
which includes lines of code and cyclomatic
complexity.

C. Design Principles and Design Patterns
What is software structure? The solution is
multitiered. At the highest degree, there are the
architecture styles that outline the overall shape

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-6, 2020

56

and shape of software program applications1.
Down a level is the architecture this is
particularly related to the purpose of the
software program application. Yet every other
stage down is living the structure of the
modules and their interconnections.
D. Four Using Educational Tools for Teaching
Object Oriented Design and Programming
The development of software systems is a
complicated method which requires a numerous
set of abilities and expertise. The Object
Oriented programming paradigm has been
confirmed to higher arrange the inherent
complexity of software systems, than the
conventional procedural paradigm. Hence,
Object Oriented (OO) is turning into the
dominant paradigm within the recent years. The
software program industry is placing increasing
emphasis on more recent, item-oriented
programming languages and gear, such as Java.
It is fantastically fascinated for software
program engineers capable to research and
develop systems using the OO programming
paradigm.”
E. Five Quality Metrics Tool for Object
Oriented Programming
Metrics degree certain residences of software
machine by way of mapping them to numbers
(or to other symbols) in step with nicely-
described, objective dimension rules. Design
Metrics are measurements of the static state of
the project’s layout and also used for assessing
the dimensions and in a few instances the fine
and complexity of software program. Assessing
the Object Oriented Design (OOD) metrics is to
expect probably fault-inclined instructions and
components in advances
F. Message Creation Overhead and
Performance
Since all messages and parameters ought to own
unique meanings to be consumed (i.E., bring
about supposed logical drift within the
receiver), they need to be created with a specific
which means. Creating any form of message
calls for overhead in either CPU or memory
utilization. Creating a single integer cost
message (which might be a connection with a
string, array or data structure) requires much
less overhead than creating a complicated
message such as a SOAP message. Longer
messages require extra CPU and reminiscence
to produce. To optimize runtime overall

performance, message duration ought to be
minimized and message that means ought to be
maximized.
G. Message Transmission Overhead and
Performance
Since a message must be transmitted in
complete to maintain its complete which means,
message transmission need to be optimized.
Longer messages require greater CPU and
memory to transmit and receive. Also, when
necessary, receivers should reassemble a
message into its authentic country to completely
get hold of it. Hence, to optimize runtime
performance, message length ought to be
minimized and message meaning have to be
maximized.
H. Message Translation Overhead and
Performance
Message protocols and messages themselves
often include greater records (i.E., packet,
shape, definition and language information).
Hence, the receiver frequently desires to
translate a message into a more subtle form by
doing away with more characters and structure
records and/or with the aid of changing values
from one type to every other. Any type of
translation will increase CPU and/or memory
overhead. To optimize runtime overall
performance, message form and content
material should be decreased and subtle to
maximize its meaning and decrease translation.
I. Nine Message Interpretation Overhead and
Performance
All messages ought to be interpreted by using
the receiver. Simple messages along with
integers might not require extra processing to be
interpreted. However, complex messages along
with SOAP messages require a parser and a
string transformer for them to showcase
intended meanings. To optimize runtime overall
performance, messages need to be refined and
decreased to limit interpretation overhead.

VII. CONCLUSION AND FUTURE
SCOPE

The above results may be used with the
intention to decide whilst and the way every of
the above metrics can be used in line with
excellent traits a practitioner wants to
emphasize. Make certain the software program
best metrics and signs they employ consist of a
clear definition of factor parts are accurate and

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-6, 2020

57

effortlessly collectible, and span the
development spectrum and practical sports.
Survey statistics shows that most corporations
are on the proper song to using metrics in
software tasks. For corporations which do no
longer mirror “high-quality practices”, and
would love to enhance their metrics
competencies, the following guidelines are
recommended to Measure the “quality
practices” listing of metrics extra continuously
throughout all projects. Focus on “easy to
implement” metrics which might be understood
via both management and software program
builders, and offer tested perception into
software program challenge activities.

A number of item orientated metrics had been
proposed inside the literature for measuring the
layout attributes which includes inheritance,
polymorphism, message passing, complexity,
Hiding Factor, coupling, concord, reusability
and so forth,. In this paper, metrics had been
used to analyze numerous capabilities of
software program component. For layout and
coding phase we use the existing metrics gear
like Chidamber & Kemerer Metrics Tool and
MoodKit. Using that gear our proposed
paintings we use JHawk tool for compromise all
of the object oriented metrics. The range of
strategies and the complexity of techniques
worried is a predictor of how a lot effort and
time is needed to develop and preserve the
magnificence. This metrics set can be carried
out on numerous initiatives and evaluate and
compare the overall performance of the code
the usage of object oriented paradigm. While
inside the past the focus in studies changed into
on inventing new metrics, now the focus is
greater on dimension idea, specifically on the
definition of new validation frameworks or of
new set of axioms. A realistic, systematic, start-
to-end technique of selecting, designing, and
enforcing software metrics is a precious
resource.

REFERENCES
[1] J. Alghamdi, R. Rufai, and S. Khan.

“Oometer: A software quality assurance
tool” 9th European Conference on
Software Maintenance and Reengineering,
21-23, March 2018, pp. 190-191

[2] H. Bsar, M. Bauer, O. Ciupke, S. Demeyer,
S. Ducasse, M. Lanza, R. Marinescu, R.
Nebbe, O. Nierstrasz, M. Przybilski, T.
Richner, M. Rieger, C. Riva, A. Sassen, B.
Schulz, P. Steyaert, S. Tichelaar, and J.
Weisbrod, “The FAMOOS Object-Oriented
Reengineering Handbook” October 2016.

[3] A. Albrecht: "Measuring application
development productivity", Proc.
Applications Development Symposium,
Monterey, CA, 2017.

[4] A. Albrecht and J. Gaffney, “Software
Function, Source Lines of Code, and
Development Effort Prediction: A Software
Science Validation” IEEE Trans. Software
Eng., 9(6), 2008, pp. 639-648.

[5] Kaur Amandeep, Singh Satwinder, K. Kahl
“Evaluation and Metrication of Object
Oriented System”, International Multi
Conference of Engineers and Computer
Scientists, Vol. 1, 2019

[6] M. Xenos, D.Stavrinoudis, K.Zikouli and
D. Christodoulakis, “Object Oriented
Metrics – A Survey”, Proceeding of the
Federation of European Software
Measurement Association, Madrid, Spain,
2016

[7] V. Basili “Qualitative Software Complexity
Models: a Summary, in Tutorial on Models
and Methods for Software Management
and Engineering” IEEE Computer Society
Press, Los Alamitos, CA, 2014.

[8] B. Bohem “Software Engineering
Economics” Prentice Hall, Englewood
Cliffs, 1981

[9] L. Briand, S. Morasca, V. Basili “Defining
and Validating High- Level Design
Metrics” Tech. Rep. CS TR-3301,
University of Maryland, 2019.

[10] L. Briand, S. Morasca, V. Basili “Property-
Based Software Engineering Measurement”
IEEE Trans. Software Eng. 22(1), 2001, pp.
68-85.

[11] S. Conte, H. Dunsmore, V. Shen “Software
Engineering Metrics and Models”
Benjamin/Cummings, Menlo Park,CA.

[12] S. Chidamber, C. Kemerer “A Metrics
Suite for Object Oriented Design” IEEE
Trans. Software Eng., 2001, pp. 263-265.

[13] S. Morasca, “Software Measurement: State
of the Art” School of the Italian Group of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-7, ISSUE-6, 2020

58

Informatics Engineering, Rovereto, Italy,
September 2018.

[14] J. Stathis, D. Jeffrey, “An Empirical Study
of Albrecht’s Function Points, in
Measurement for Improved IT
management” Proc. First Australian
Conference on Software Metrics, Sydney,
2002, pp. 96 - 117.

[15] E. Weyuker, “Evaluating Software
Complexity Measures” IEEE Trans.
Software Eng., 14(9), 2002, pp. 1357-1365.

[16] H. Zuse, “Software Complexity: Measures
and Methods” Walter de Gruyter, Berlin,
2006.

[17] Ada and C++, “A Business Case Analysis”
Office of the Deputy Assistant Secretary of
the Air Force, Washington, DC, June 1999.

[18] Albrecht, A.J, “Measuring Application
Development Productivity” Proceedings of
the IBM Applications Development
Symposium, Monterey, California, October
2005.

[19] Boehm, Barry W, “Software Engineering
Economics” Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 2006.

[20] Boehm, Barry W., “Software Pivotal to
Strategic Defense” IEEE Computer,
January 2001.

