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Abstract-To support high level analysis of 
hyperspectral imagery, spectral unmixing 
has been used in recent years. Still, there is 
apresence of unavoidable spectral variability 
in the unmixing process, which make it 
difficult to accurately estimate endmembers 
and abundance maps in spectral unmixing. 
In this paper, study of different unmixing 
algorithms in hyperspectral images is 
proposed. Linear mixing model is the 
simplest mixing model used in hyperspectral 
analysis, but this model not address the 
spectral variations and spectral correlation. 
To this end, extended linear mixing model 
and tensor based unmixing model using low-
rank strategy is proposed, which performs 
robustly against spectral variability 
problems of hyperspectral unmixing. By 
projecting the original data into a low-rank 
subspace, it can effectively reduce 
computational complexity in unmixing 
process. Furthermore, alternating direction 
method of multipliers-based algorithm can 
be used to solve the optimization problem. 
Experiments on synthetic and real datasets 
are performed to demonstrate the 
effectiveness and superiorityof various 
methods. 
Index Terms —Hyperspectral data analysis, 
Subspace unmixing, Spectral 
variability,Alternating direction method of 
multipliers,Low-rank, Remote sensing. 

I. INTRODUCTION 
Hyperspectral imaging(HSI), like 

other spectral imaging, which analyse wide 
spectrum of light across the electromagnetic 
spectrum. HSI is a technique that uses hundreds 

of bands for acquiring an imageinstead of using 
just three primary colours (red, green, blue). HSI 
isorganized in the form of Data cube (3d 
data).An hyperspectral camera covers visible, 
near IR and shortwave IR region in 
electromagnetic spectrum. It is characterized by 
very rich spectral information and low spatial 
resolution, which help us to detect targets of 
interest and identify unknown materials more 
easily.Hyperspectral data processing and 
analysis, include dimensionality reduction [1], 
[2], image segmentation [3], land-cover 
detection and land-use classification [4], and 
target detection [5]. However,pixels in HSI 
suffer from the effect of spectral mixing due to a 
lower spatial-resolution. These material 
mixtures unavoidably degrade the spectrally 
discriminative ability, particularly in some high-
level applications. Due to large number of 
spectral band and hence large data size, HSI 
processing iscomputationally 
complex.Unmixing reduces the data size 
considerably.Hyperspectral unmixing is process 
of decomposing the hyperspectral image into a 
number ofendmembers and their fractional 
abundances.Pure spectral components in an 
image is called as endmembers. The fraction 
occupied by the endmembers are called 
abundances. 

 

https://en.wikipedia.org/wiki/Spectral_imaging
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
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Fig 1: Endmembers and abundances present in a 

pixel 
 
Figure1 illustrate the endmembers and 
abundances present in a pixel. Here the 
endmembers are tree grass and soil. Abundances 
are 15%,25% and 60%. The pixel contains 15% 
soil,25% tree and 60% grass.Spatial resolution 
of HSI is less as compared to other images, that 
means spatial portion occupied by a substance is 
smaller than the ground pixel size (tens of 
meters). As a result, the signal read by the 
sensor from a given spatial element of resolution 
and at a given spectral band is a mix of 
components originated from the constituent 
substances(endmembers), the   located at that 
element of resolution. In this situation, the 
scattered energy is a mix of the endmember 
spectrum. 

 

 
The observed mixture is classified based on the 
mixing scale at each pixel.These areeither linear 
or nonlinear. The linear mixing model figure. 
2.1 holds approximately when the mixing scale 
is macroscopic and there is negligible 
interaction among distinct endmembers. The 
nonlinear model [6] holds when the mixing 
scale is microscopic (i.e. intimate mixtures). 
Fig. 2.2 illustrates an intimate mixture, yielding 

a nonlinear scenario. The linear model [7] 
assumes negligible interaction among distinct 
endmembers. The nonlinear model is a complex 
model as compared to linear, here weassume 
that incident solar radiation is scattered by the 
scene through multiple reflection involving 
several endmembers. Very often, the effects of 
multiple scattering are assumed to be negligible 
and thus the linear model is adopted.  
 

Fig 3. Block diagram of unmixing 
 
Block diagram of unmixing is shown in figure3. 
The hyperspectral image with N spectral bands 
are input for unmixing process. In this process, 
first step is to estimate the number of 
endmembers. In second step,identified 
endmembers are extracted and estimate the 
fractional abundances. After unmixing process 
the endmembers and fractional abundances are 
obtained. 

In remote sensing, spectral unmixing [8] is 
having many applications and the techniques 
have been widely and successfully applied to a 
variety of tasks, including mineral exploration 
and identification [9], forest monitoring 
[10],[11].Illumination and atmospheric effects 
are the most common cause of unmixing. Hence 
the radiance acquired by hyperspectral sensors 
cannot be directly compared with a digital 
spectral library or even with other radiance data 
sets. This comparison is made possible by the 
atmospheric correction, which transforms the 
radiance spectra into reflectance. This operation 
accounts for solar spectrum, sensor and sun 

Macroscopic mixture: 
15% soil,25% tree,60%grass 

 

Fig 2.1. Linear 
interaction model    

Fig 2.2. Nonlinear 
interaction model    
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directions, path radiance, secondary 
illumination and shadowing. The second 
operation, data reduction, here data is reduced 
based of the fact that the number of 
endmembers present in the scene is usually 
much smaller than the number of bands of a 
hyperspectral data set. This operation has a 
great impact since it reduces theamount of 
dataas well as computational complexity, and it 
improves the signal-to-noise ratio (SNR). The 
third operation, spectral unmixing, consist of 
two steps: endmember determination and 
inversion. The first step estimates the signatures 
of the different endmembers present in the 
scene. The second step estimates the abundance 
[12] fractions of each endmember. To conduct 
the hyperspectral unmixing operation, a mixture 
model must be adopted to describe how the 
constituent endmembers and how the 
atmosphere scatters the sun light at a given 
pixel. 

Assuming the absent of multiple scattering, 
and mixing between the materials are negligible, 
then the  spectrum of each pixel in the HSI scene 
is approximately measured by a linear mixing 
model (LMM) [8].LMM is the simplest model 
used in unmixing but which does not consider 
the spectral variability. Without considering 
spectral variability, propagating unpredictable 
errors through LMM. To solve this issue an 
extended LMM (ELMM)[13],[14] was 
introduced. Which modelling bymultiplying 
different scaling factors on each endmember 
matrix, but is a significant shortcoming in that 
many spectral variabilities are not be involved 
correspondingly. Perturbated linear mixing 
model (PLMM) [15] attempts to describe the 
spectral variability as an additive perturbation 
information. Nonnegative matrix factorization 
(NMF) [16]ensures nonnegativity and no 
assumption for the presence of pure pixels. In 
these methods not consider the spectral 
variability and spectral correlation. Using a 
tensor based low rank unmixing frame work can 
address these issues. 

This paper is organized as follows. In section 
2 deals with different unmixing methods. Paper 
is concluded in Section 3. 
 

II. DIFFERENT UNMIXING METHODS 
In this section, we review different unmixing 
algorithms, introducing LMM-based unmixing 
models, fully constrained least squares 

unmixing (FCLSU) [17], partial constrained 
least squares unmixing (PCLSU) [8], ELMM, 
PLMM and low rank-based approach using 
tensor [18]. 
Imaging spectrometers is used to measure 
electromagnetic energy scattered in hundreds or 
thousands of spectral bands with higher spectral 
resolution. Higher spectral resolution enables 
material identification and provide accurate 
information of material via hyperspectral image 
analysis, which improve different applications 
scenarios, unable for classical spectroscopic 
analysis that require identification of materials. 
Unmixing is the process of estimating the 
endmembers, and their abundances at each 
pixel. The information of the ground surface 
can be described by a three-dimensional 
structure, referred to as a data cube. Mixtures of 
the spectral signatures of the endmembers 
present in the scene is called hyperspectral 
vectors. Linear spectral mixture is the linear 
combination of the endmember present in the 
scene and the analysis aims at estimating the 
number of endmembers, their spectral 
signatures. 

Variable illumination and environmental, 
atmospheric, and temporal conditions cause 
spectral variations within hyper spectral 
imagery. By ignoring these variations, errors are 
introduced in the unmixing process and these 
errors propagated throughout unmixing process. 
To develop accurate spectral unmixing and 
estimate spectral variabilities [19],[20], a 
number of approaches that account for spectral 
variability have been developed. 

A lot of algorithms like Hyperspectral Signal 
Subspace Estimator (HySime) [21], Vertex 
Component Analysis (VCA) [22] N-FINDER 
[23] were introduced for hyperspectral 
unmixing. HySime for signal subspace 
identification, VCA for endmember extraction. 

A. LMM 
It is a simplest model, fast unmixing 

strategy. In linear mixing model (LMM) 
[24],[8] each observed spectrum in each pixel of 
a given image is assumed to resulting from the 
linear combination of endmember spectrum.  

LetY= [𝑦𝑦1, . . .  𝑦𝑦𝑖𝑖 , . . .  𝑦𝑦𝑁𝑁] ∈𝑅𝑅𝐷𝐷×𝑁𝑁 be an 
unfolded HSI with D bands and N pixels, and A 
= [𝑎𝑎1, . . . , 𝑎𝑎𝑝𝑝 ] ∈𝑅𝑅𝐷𝐷×𝑃𝑃 be the endmembers with 
the size of 𝐷𝐷 × 𝑃𝑃. X =[𝑥𝑥1, . . . , 𝑥𝑥𝑖𝑖 , . . . , 𝑥𝑥𝑁𝑁] 
∈𝑅𝑅𝑃𝑃×𝑁𝑁 is denoted as abundance maps, whose 
each column vector stands for the fractional 
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abundance at each pixel R= [𝑟𝑟1, . . . , 𝑟𝑟𝑖𝑖 . . . , 𝑟𝑟𝑁𝑁] 
∈𝑅𝑅𝐷𝐷×𝑁𝑁 is the residual (e.g. noise, modelling 
errors and others) in the form of matrix. Linear 
combination of endmember spectra, resulting in 
the LMM can be represented as:  

 
Y = A𝑥𝑥𝑖𝑖+𝑟𝑟𝑖𝑖    (1) 
  

 where  𝑥𝑥𝑖𝑖should be non-negative in 
order to meet the physical constraints in reality. 
Moreover, the fractional abundance𝑥𝑥𝑖𝑖 , 
represents the proportions occupied by the 
different endmembers. This means 𝑥𝑥𝑖𝑖should be 
also satisfy sum-to-one constraint. Therefore, 
Eq. (1) with the necessary constraints is 
expressed as, 
 
 Y = A𝑥𝑥𝑖𝑖+𝑟𝑟𝑖𝑖 , s.t. A≥0, 𝑥𝑥𝑖𝑖 ≥  0, ∑ 𝑥𝑥𝑖𝑖 = 1;𝑁𝑁

𝑖𝑖=1  (2) 
 
Collecting all pixels in this model, a compact 
matrix form of Eq. (2) can be written as, 
 
 Y = AX+R, s.t. A≥0, X ≥  0, ∑ 𝑋𝑋 = 1𝑁𝑁

𝑖𝑖=1  (3) 
 
The LMM assumes that the pure material 
endmembers are fixed for all pixels 𝑟𝑟𝑛𝑛 ,n = 1, 
…., N, in the HSI. Spectral variability is not 
considered in LMM. 
  . 
    1)FCLSU: In practice, the endmembers (A) 
can be pre extracted from the given scene using 
vertex component analysis (VCA) [22]. This 
renders us to more effectively and conveniently 
estimate the abundance maps (X) by degrading 
the Eq. (3) to least-square problem, leading to 
FCLSU [17], 
 

 𝑚𝑚𝑖𝑖𝑛𝑛𝑋𝑋  {1
2
‖Y −  AX‖𝐹𝐹2  ,𝑋𝑋 ≥  0 ∑ 𝑋𝑋 = 1𝑁𝑁

𝑖𝑖=1 (4) 
 

In the presence of spectral variability, FCLSU 
yields a poor performance. It mainly derives 
from the strong sum-to-constraint. A common 
way to solve this issue is to abundance fractions 
sum to less or larger than one or to consider a 
part of full constraints. 
    2) PCLSU: PCLSU can be formulated by 
solving 
 

 𝑚𝑚𝑖𝑖𝑛𝑛𝑋𝑋  {1
2
‖Y −  AX‖𝐹𝐹2  ,𝑋𝑋 ≥  0 (5) 

The estimated variable X in Eq. (5) might be 
any scales, owing to a badly-conditioned 
observed matrix Y. To alleviate the effects of 

the ill-posed problem, meaningfully physical 
assumptions have to be added in the form of 
regularization. 
 

B. ELMM 
Extended linear mixing model (ELMM) 

[13],[14] Effectively model changes in the 
observed spectrum due to illumination. ELMM 
aims to modeling the principle spectral 
variability (scaling factors) to allow a pixel-
wise variation at each endmember, observed 
pixel can be represented as, 

 
Y = A𝑥𝑥𝑖𝑖𝑆𝑆𝑖𝑖+𝑟𝑟𝑖𝑖   (6) 
 

where 𝑆𝑆𝑖𝑖∈R𝑃𝑃 ×𝑃𝑃 is a diagonal matrix with the 
nonnegative constraint (𝑆𝑆𝑖𝑖 ≥0). A matrix form 
of Eq. (6) can be repented as 
 

Y = A (S⊙X) + R  (7) 
 

here 𝑆𝑆𝑖𝑖∈R𝑃𝑃 ×𝑁𝑁 is a full matrix collecting the 
scaling factors from all pixels whose 𝑖𝑖𝑡𝑡ℎcolumn 
is 𝑆𝑆𝑖𝑖 . The operator ⊙is denoted as the Schur-
Hadamard (term wise) product. 1)SPCLSU: 
Prior to ELMM, SPCLSU is used to find the 
scaling factor [20] in which endmembers are 
reasonably assumed by sharing a same 
scale.The scaling factors are changed with 
topography. SPCLSU actually conducts a 
PCLSU in the beginning stage, and then 
normalizes the abundance maps to meet 
constrain of abundance that is sum-to-one. This 
is a simple but effective strategy, which is also 
involved in proposed method. Modelling 
capability of ELMM is limited. 
 

C. PLMM 
PLMM is a perturbated linear mixing model 

in which attempts to describe the spectral 
variability as an additive perturbation 
information. Both the pixel-wise and the 
corresponding matrix form of PLMM[15] can 
be expressed respectively 

 
𝑦𝑦𝑖𝑖= (A +𝛥𝛥𝑖𝑖)𝑥𝑥𝑖𝑖+ 𝑟𝑟𝑖𝑖   (8)  
and 
 
𝛥𝛥 = [𝛥𝛥1𝑥𝑥𝑖𝑖⎹…⎹𝛥𝛥𝑖𝑖𝑥𝑥𝑖𝑖⎹…⎹𝛥𝛥𝑁𝑁𝑥𝑥𝑁𝑁] 
     Y = AX + [𝛥𝛥1𝑥𝑥𝑖𝑖⎹…⎹𝛥𝛥𝑖𝑖𝑥𝑥𝑖𝑖⎹…⎹𝛥𝛥𝑁𝑁𝑥𝑥𝑁𝑁]+ R(9)   
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                     where Δ is denotes the 
perturbation information of the endmembers. 

 
1. Problem Formulation  

PLMM and constraints can be combined to 
formulate a constrained optimization problem. 
An appropriate cost function is required to 
estimate the parameters M, A and 𝑑𝑑𝑑𝑑. Signal is 
corrupted by a zero-mean white Gaussian 
noiseand data fitting term definedas the 
Frobenius norm of the difference between the 
acquisitions Y and the reconstructed data 
MA+𝛥𝛥. Since the problem is ill-posed, 
additional penalization terms are needed for 
optimization. Penalization functions are 
𝛷𝛷,𝜓𝜓, 𝑎𝑎𝑛𝑛𝑑𝑑 𝛶𝛶. The optimization problem is 
expressed as, 
(𝑑𝑑∗,𝑑𝑑𝑑𝑑∗,𝐴𝐴∗)𝜖𝜖 arg min𝑑𝑑,𝐴𝐴,𝑑𝑑𝑑𝑑 {𝐽𝐽(𝑑𝑑,𝐴𝐴,𝑑𝑑𝑑𝑑)𝑠𝑠. 𝑡𝑡}
  (10) 

 
with 
 

𝐽𝐽(𝑑𝑑,𝐴𝐴,𝑑𝑑𝑑𝑑)=1
2
‖Y −  MX − 𝛥𝛥‖𝐹𝐹2 + α 𝛷𝛷(𝐴𝐴)  

(11) 
+ β𝜓𝜓(𝑑𝑑) +  γ 𝛶𝛶(𝑑𝑑𝑑𝑑) 

 
where the penalization parameters α, β,γ 

control the trade-off between the data fitting 
term 1

2
‖Y −  MX − 𝛥𝛥‖𝐹𝐹2 and the penalties 

𝛷𝛷(𝐴𝐴) ,𝜓𝜓(𝑑𝑑), and  𝛶𝛶(𝑑𝑑𝑑𝑑). In addition,here we 
assume that the penalization functions are 
separable, leading to the equations, 

𝛷𝛷(𝐴𝐴) = ∑ 𝛷𝛷( 𝑎𝑎𝑛𝑛)𝑁𝑁
𝑛𝑛=1              (12) 

 
𝜓𝜓(𝑑𝑑) = ∑ 𝜓𝜓( 𝑚𝑚𝑙𝑙)𝐿𝐿

𝑙𝑙=1                      (13) 
 

𝛶𝛶(𝑑𝑑𝑑𝑑)=∑ 𝜐𝜐( 𝑑𝑑𝑑𝑑𝑛𝑛)𝑁𝑁
𝑛𝑛=1    (14) 

 
where 𝑚𝑚𝑙𝑙denotes the l throw of M and 𝛷𝛷,𝜓𝜓  
and 𝜐𝜐 are non-negative differentiable convex 
functions.  Due to the presents of large 
perturbation information PLMM is difficult to 
solve. 
D. HySim 
 Hyperspectral Signal Subspace Estimator 
(HySime) is approach based on a mean squared 
error (MSE). It used to determine the signal 
subspace in hyperspectral imagery. HySime[21] 
is on eigen decomposition method; it estimates 
both signal and noise correlations matrices, then 
it considers the subset of eigenvalues which 
best represents the signal subspace in the least 

square error sense. This method has been 
optimized to reduce the computational 
complexity. Signal subspace identification is the 
major step in many hyperspectral processing 
applications such as target detection, change 
detection, classification, and unmixing. The 
identification of this subspace enables many 
advantages in unmixing algorithm, these 
includeacorrect dimensionalityreduction, 
improve the algorithm performance and 
complexity and in data storage. In a 
hyperspectral image each pixel y can be 
represented as, 
 
y = x + n  (14) 

 
where x and n are denotes the signaland 
additive noise, respectively. 
 
  1)Noise Estimation Noise estimation: Follow a 
multiple regression theory-based approach. The 
high correlation is present between neighboring 
spectral bands. The main reason for good 
performance of the multiple regression theory in 
hyperspectral applications is the high 
correlation. Let Y denote an L×N matrix, N 
denotes the spectral observed vectors and L is 
the size. Define the matrix Z = 𝑉𝑉𝑇𝑇T and the N 
×1vector   𝑧𝑧𝑖𝑖  = [𝑍𝑍]:,𝑖𝑖  ,where[𝑍𝑍]:,𝑖𝑖  stands for the 
ith column of Z and the N ×(L−1) matrix 𝑍𝑍∂i  =[ 
𝑧𝑧1,...,𝑧𝑧𝑖𝑖−1,𝑧𝑧𝑖𝑖+1,...,𝑧𝑧𝐿𝐿]. Assume that 𝑧𝑧𝑖𝑖  is 
explained by a linear combination of the 
remaining L−1 bands. Formally, this consists in 
writing, 
 

𝑧𝑧i = 𝑍𝑍∂i βi  + ξi     (15) 
where 𝑍𝑍∂i  is the explanatory data matrix, βi   is 
the regression vector of size (L−1) ×1, and ξi   is 
the modeling error vector of size N ×1. For each 
i ∈{ 1,...,L}, the least squares estimator of the 
regression vector  βi  is given by 
 

βi = (𝑍𝑍∂i
𝑇𝑇 𝑍𝑍∂i )−1𝑍𝑍∂i

𝑇𝑇 𝑧𝑧i        (16) 
 

The noise is estimated by 
 

ξI = 𝑧𝑧i − 𝑍𝑍∂i βI                                (17) 
 

2) Signal Subspace Estimation :The signal 
subspace estimation  is core structure of the 
proposed method. The first step, which is based 
on the noise estimation procedure 
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henceidentifies a set of orthogonal directions, of 
which an unknown subset spans the signal 
subspace. By seeking the minimum MSE 
between x, the original signal, and a noisy 
projection of it obtained from the vector y = 
x+u is usedto determined the subsets. We 
assume that u∼N(0,Ru), i.e.,the noise is zero-
mean Gaussian distributed with the covariance 
matrix Ru. Let the eigen decomposition of the 
signal sample correlation matrix 𝑅𝑅𝑥𝑥   =[ 
𝑥𝑥1,...,𝑥𝑥𝑁𝑁][ [ 𝑥𝑥1,...,𝑥𝑥𝑁𝑁]𝑇𝑇/N be written as 
 
                           Rx = EΣ𝐸𝐸𝑇𝑇  (18) 
 
E. N-FINDE 
N-finder algorithm (N-FINDR)[23] has been 
widely used in endmember extraction. Several 
issues need to be addressed when implementing 
this algorithm.Computational complexity 
resulting from an exhaustive search, 
determination of endmembers, required for N-
FINDR to generate,requirement of 
dimensionality reduction, and probably the most 
critical issue is its use of random initial 
endmembers which results in inconsistent final 
endmember selection and results are not 
reproducible are some disadvantages of N-
FINDR algorithm. These disadvantages are 
overcome by implement the N-FINDR as a 
random algorithm, called random N-FINDR 
(RN-FINDR). 
 
N-FINDR Steps  
1. Preprocessing:  
a) Let p denote the number of endmembers. 
b) Apply a DR transform such as MNF to 
reduce the data dimensionality from L to p 
whereL is the total number of spectral bands.  
2. Exhaustive search:  
For an arbitrary set of p data sample vectors 
form 𝑒𝑒 1,  𝑒𝑒 2, 𝑒𝑒 3 … ,  𝑒𝑒 𝑝𝑝  a p vertex simplex 
specified by S( 𝑒𝑒 1,  𝑒𝑒 2, 𝑒𝑒 3 … ,  𝑒𝑒 𝑝𝑝  )and define 
its volume V( 𝑒𝑒 1,  𝑒𝑒 2, 𝑒𝑒 3 … ,  𝑒𝑒 𝑝𝑝  ) by, 
 

V( 𝑒𝑒 1,  𝑒𝑒 2, 𝑒𝑒 3 … ,  𝑒𝑒 𝑝𝑝  ) =
⎹ 𝑑𝑑𝑒𝑒𝑡𝑡  � 1  1…1

 𝑒𝑒  1 𝑒𝑒  2… 𝑒𝑒  𝑝𝑝 �⎹

(𝑝𝑝−1)
     

(20) 
 

Find a set of data sample vectors in the data, 
denoted  {𝑒𝑒  1

∗ , 𝑒𝑒  2,
∗

𝑒𝑒  3
∗ … , 𝑒𝑒  𝑝𝑝

∗ }by , that form 
a p vertex simplex to yield the maximum value 
of (20), i.e.,  

 
 {𝑒𝑒  1

∗ , 𝑒𝑒  2,
∗

𝑒𝑒  3
∗ … , 𝑒𝑒  𝑝𝑝

∗ } =
         𝑎𝑎𝑟𝑟𝑎𝑎{ 𝑚𝑚𝑎𝑎𝑥𝑥  𝑒𝑒  1, 𝑒𝑒  2, 𝑒𝑒  3…, 𝑒𝑒  𝑝𝑝  ,

V(

 𝑒𝑒 1,  𝑒𝑒 2, 𝑒𝑒 3 … ,  𝑒𝑒 𝑝𝑝  )} 
                                                                      
(21) 
 

The set of  {𝑒𝑒  1
∗ , 𝑒𝑒  2,

∗
𝑒𝑒  3
∗ … , 𝑒𝑒  𝑝𝑝

∗ } is the 
desired set of endmembers needed to be found. 
To complete the above exhaustive search in this 
step there are 

�𝑁𝑁𝑝𝑝� = 𝑁𝑁!
�𝑝𝑝!(𝑛𝑛−𝑝𝑝!)�𝑝𝑝!

vertex simplexes needed to be 

compared based on the criterion specified. 
Spectral variability is not considered using N-
FINDER and is less accurate using real data. 

 
F. Vertex Component Analysis(VCA) 
VCA is a fast algorithm to unmix hyperspectral 
data. It extracts endmembers using two facts: 
(i) The endmembers are represented as a 

vertex of a simplex. 
(ii) The transformation of a simplex is also 

a simplex.  
 

VCA algorithm is having computational 
complexity between one and two orders of 
magnitude lower than the best available 
method. 
InVCA [22] algorithm, is done using a subspace 
contain initial endmembers. The algorithm 
iteratively projects data onto a direction 
orthogonal to this subspace. The new 
endmember signature identified corresponds to 
the extreme of the projection. Fig. 4 shows the 
VCA algorithm applied to the simplex defined 
by the mixture of two endmembers. Which 
shows the two iteration of VCA algorithm. The 
extreme of the projection is selected as 
endmember.The number of iterations is same as 
the number of endmembers in data. 
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Fig. 4.Plot of mixtures of the three endmembers 

 
The drawback of VCA is that, accuracy is low 
and does not contain all the data information's 
in the image. 
 
G. Nonnegative Matrix Factorization (NMF) 

Nonnegative matrix factorization (NMF)[16] 
ensures nonnegativity and no assumption for the 
presence of pure pixels. By introducing two 
constraints, namely, abundance separation and 
smoothness, into the algorithmfor optimization. 
NMF decomposes a set of hyperspectral data 
into two nonnegative matrices and finds “basis 
vectors”. Here the original data are 
approximated through linear combination. 
Given the observation matrix R ∈ L×N and a 
positive number P<min(L, N), the objective of 
NMF is to find two matrices M and S with all 
elements being nonnegative and R ≈ MS 
holding. Problem is to formulate as, 
 

J(M,S)=‖R−MS‖= ∑ (Rij  − (MS)𝑖𝑖𝑖𝑖 )𝐼𝐼,𝐽𝐽  (22) 
The symbol “‖·‖” represents the Frobenius 
norm. 
Augment R and M are as follows 
 
𝑑𝑑𝐴𝐴 ← � 𝑑𝑑𝛿𝛿1𝑇𝑇�     

   (23) 
𝑅𝑅𝐴𝐴 ← � 𝑅𝑅𝛿𝛿1𝑇𝑇�     

   (24) 
After the initialization for M is finished, the 
initial S is generated by the equation, 
 

          S =(𝑑𝑑𝑇𝑇M)−1−𝑑𝑑𝑇𝑇R     (25)  
This method consider same noise level present 
in all bands, soit  is fail to find reliable 
endmember and abundances. Spectral 

correlation is not considered.   
    
H. Low-Rank Tensor Modelling  
This method model spectral variability and 
spectral correlation usingtensor-based [25] 
strategies. Low rank decompositions of 
hyperspectral images areintroducing low-
dimensional structures [18],[26] on the 
solutions of unmixing problems.The mixing 
model, combined with spatial regularization 
over the abundance and endmember estimations 
[27] is used to address the spectral variability 
[19] in the unmixing process.  

Assuming that endmember matrix A has 
a low-rank representation as KA, and abundance 
matrix M has a low-rankKM.The global cost 
functional for the unmixing problem can be 
expressed as, 

 
J(A,M)=

1
2
∑ ∑ �𝑅𝑅𝑛𝑛1,𝑛𝑛2−M𝑛𝑛1,𝑛𝑛2, : , A𝑛𝑛1,𝑛𝑛2�

𝑁𝑁2
𝑛𝑛2−1

𝑁𝑁1
𝑛𝑛1=1 (26) 

s. t. rank (M) = KM, M ≥ 0 ,rank(A) = KA, A ≥ 0, 
A x 11𝑅𝑅= 1𝑁𝑁1 x 𝑁𝑁2 

By introducing new regularization terms 
controlled by two low-rank tensors Q є 
𝑅𝑅𝑁𝑁1𝑋𝑋𝑁𝑁2 𝑋𝑋𝑅𝑅   and Pє𝑁𝑁1𝑋𝑋𝑁𝑁2 𝑋𝑋𝐿𝐿𝑋𝑋𝑅𝑅 to impose non-
strict constraints on KA and KM. The λA, λMє 
R+are the two constraints introduced controlled 
the strictness of the low-rank constraint [18]. 
Then cost function is given by  
 
    J(A,M,P,Q) = arg 𝑚𝑚𝑖𝑖𝑛𝑛

𝐴𝐴,𝑑𝑑,𝑃𝑃,𝑄𝑄
1
 2
∑ ∑ �𝑅𝑅𝑛𝑛1,𝑛𝑛2 −

𝑁𝑁2
𝑛𝑛2−1

𝑁𝑁1
𝑛𝑛1=1

 M𝑛𝑛1, 𝑛𝑛2, :, :,A𝑛𝑛1, 𝑛𝑛2P

2
F+ λ𝑑𝑑2𝑑𝑑−𝑃𝑃P

2
F  + 

λ𝐴𝐴
2
‖𝐴𝐴 − 𝑄𝑄‖P

2
F 

s. t. M ≥ 0, A ≥ 0, A x 11𝑅𝑅 = 1𝑁𝑁1𝑋𝑋 𝑁𝑁2 (27) 
with rank (P) =  KM and rank(Q) = KA.  
 
Spectral correlation and low rank 
decompositions of hyperspectral images are 
considered using tensor based[28],[29] 
approach.Low-dimensional structures is 
implemented based on tensor.Which is 
asolution of standard and multitemporal 
unmixing problems. It hassuperior accuracy 
when compared with state-of-the-art unmixing 
algorithms. 

III. CONCLUSION 
 This Paper is motivated by the fact that 

to study different unmixing methods. LMM is a 
simplest model used in unmixing. ELMM can 
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address the spectral variability. VCA, N-FINDR 
and HySime are used to estimate the 
endmembers and subspace identification with 
minimum error. The spectral signature in the 
original hyperspectral space inevitably suffers 
from largely and diversely spectral variabilities. 
Spectral correlation is also not considering in 
traditional hyperspectral analysis. To address 
this issue, implement a low rank tensor based 
unmixing method.  
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