

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-9, 2019

41

A STUDY ON SERIAL AND PARALLEL WORD SEARCH

PROCEDURES
1R.Ananda Devi, 2R.Chithra Devi

1Assistant Professor, Department of Computer Science, Govindamal Aditanar College for Women,
Tiruchendur

2Assistant Professor, Department of IT, Dr.Sivanthi Aditanar College of Engineering, Tiruchendur

ABSTRACT
Word search is used everywhere from local
page search (Cntrl + F) to searching words
on document viewer like “reader” in
windows. In fact a whole branch called
Information Retrieval was developed for
this. This project was actually inspired by
Information Retrieval. It has a lot of
application in real word.As the name
suggests “word search” is about searching
words in documents parallely using
OpenMP. This is not just a simple word
search but it also ranks the documents
based on the relevance of the documents
with respect to the searched word. The
documents are scanned word by word and a
dictionary is maintained so that words can
be searched. Since documents can have
several thousands of terms scanning each
term can take a lot of time and hence there
is a lot of scope for parallelization.
Keywords: Open MP, Sequential, Parallel,
C++, Thread

INTRODUCTION
This paper focuses on the principle of
multithreaded systems. It uses multiple threads
to read multiple files and perform the action.
The action here being searching the word
through the files, and doing so in very less
time as compared to the sequential system.
The parameters are similar to that of the
sequential method, but the processors are used
to do the sequential process on multiple files at
the same time. It can be done through either
sequential or multithreaded search
works.Sequential method spokes about updates
like Panda and Hummingbird and highlighted
how important semantics in search is, in

modern SEO strategies.Search strings are more
conversational now, they are of the long-tail
variety and are often, context rich.
Traditionally, keyword research involved
building a list or database of relevant
keywords that we hoped to rank for. Often
graded by difficulty score, click through rate
and search volume, keyword research was
about finding candidates in this list to go
create content around and gather some organic
traffic through exact matching.

A simple method of sequential method is used
to search the file of the given file and is shown
in fig. 1. The method is quite simple, input the
file, read the file, input the word which needs
to be searched, and search the file, and give
output that it is found or not. Multithreaded
method uses multithreaded library and declare
multiple threads to handle each file [1, 3].
Functions are defined in the thread headerfile.
Std::thread is the thread class that represents a
single thread in C++. To start a thread we
simply need to create a new thread object and
pass the executing code to be called (i.e. a
callable object) into the constructor of the
object. Once the object is created a new thread
is launched which will execute the code
specified in callable.Word search process can
be done by various parallel programming
paradigms such as OpenMP, MPI, etc. [2, 4].It
searches for words in multiple text files
paralleland the concept is shown in fig. 2. This
reduces the execution time of the code as
compared to the sequential word search. The
documents are scanned word by word and a
dictionary is maintained so that words can be
searched. Since documents can have several
thousands of terms scanning each term can

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-9, 2019

42

take a lot of time and hence there is a lot of
scope for parallelization. These approaches
can be used in various applications such graph
coloring, 8-directional array P system [5] and
so on.

The purpose of this paper is to analysis which
word search method is efficient to handle the
multiple files. The conclusion will give us the
sufficient reasons to choose the method. This
could be helpful for future word searing
engines

.

Fig. 1 Sequential model of word search

Fig. 2 Parallel model of word search

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-9, 2019

43

METHODOLOGY
The divide and conquer paradigm is used to find
the optimal solution for the problem. Its basic
idea is to decompose a given problem into two
or more similar, but simpler, sub problems, to
solve them in turn, and to compose their
solutions to solve the given problem. Problems
of sufficient simplicity are solved directly. For
example, to sort a given list of n natural
numbers, split it into two lists of about n/2
numbers each, sort each of them in turn, and
interleave both results appropriately to obtain
the sorted version of the given list. This
approach is used in the merge sort algorithm.

An important application of divide and conquer
is in optimization, where if the search space is
reduced ("pruned") by a constant factor at each
step, the overall algorithm has the same
asymptotic complexity as the pruning step, with
the constant depending on the pruning factor
(by summing the geometric series); this is
known as prune and search. For the
implementation, the basic code is written in
C++ which uses OpenMP to parallelize the
code.The documents are located in a folder and
file names are given as somecollection. The
files are taken in a parallel way and all the data

is collectively stored in avector. Then the
vectors are sent to a search method that
parallelize the search and concurrently browses
through the workingdocuments. After this, the
documents are ranked based on highest word
searches.A mapping is done and the text files
are displayed accordingly based on those with
highest occurrence.

RESULT AND DISCUSSIONS
A sample of 65 files is used, each containing
around 1500 words and compared the search
time of both parallel and sequential codes.The
code can search for statements as well as
words.If the user gives a statement as input our
code will break the statement into an array of
words and search for each word in the files
sequentially.For this we have created a method
called substring which takes the starting index,
ending index and the string as input parameters.
At last it find the count of all the word in the
files and sums it all.The output will be the count
of occurrences of statement in the files.
Statement entered “Dahl is a great writer”

Sequential code
Sequential time = 1.53 seconds

Parallel code

Fig. 3 Parallel search time of problem 1
Parallel search time of problem 1(when number of threads is equal to the number of files to be
searched i.e 65)=1.022.

https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Geometric_series
https://en.wikipedia.org/wiki/Prune_and_search

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-9, 2019

44

Fig. 4 Parallel search time of problem 2

Parallel search time of problem 2(when number of threads is equal to half the number of files to be
searched i.e 32)=0.533 seconds

Fig. 5 Parallel search for problem 3

Parallel search timeof problem 3 (when number of threads is equal to one fourth the number of
files to be searched I.e 15)=0.926000 seconds

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-9, 2019

45

Fig. 6 Parallel search for problem 4

Parallel search time of problem 6 (when number
of threads is far greater than number of files to
be searched i.e 10000)=4.699000 seconds

It is understood, OpenMP follows for join
concept.Thus additional overheads incur when
we create threads for a program.Thus the
number of threads chosen have to such that the
parallel code gives the best possible
result.When we used number of threads to be
65 we were getting access time which was less
than the sequential time but due to the
additional overhead of fork and join of threads
the result was not the most optimum. When we
took the number of threads to be too small,

again we were getting the search time to be
better than the sequential but not most
optimum.When we took the number of threads
to be 10000, the search time came out to be 4
seconds which was far worse than the
sequential search time. Thus after detailed
analysis of the code and taking different
number of files and trying out with different
number of threads we came to conclusion that
for the search time to be least, the number of
threads should be around half of the number of
files used for less than 100 files to be read. Fig.
7 shows the result of parallel search where X-
axis shows the number of threads and Y-axis
shows the number search time in seconds.

Fig. 7 Time taken for parallel search with respect to number of threads

CONCLUSION
The serial and parallel code was executed
successfully and applying parallelism reduces
running time significantly. Word search is used
everywhere from local page search (Cntrl + F)

to searching words on document viewer like
“reader” in windows. Information retrieval is
another application where word search concepts
can be greatly used.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-9, 2019

46

REFERENCES
[1] García-López, Félix, et al. “The parallel
variable neighborhoodsearch for the p-median
problem”, Journal of Heuristics 8.3, 375-388,
2002
[2] Sub, Michael, and Claudia
Leopold,“Implementing irregular
parallelalgorithms with OpenMP”, European
Conference on ParallelProcessing, Springer,
Berlin, Heidelberg, 2006.
[3]Drews, Frank, Jens Lichtenberg, and Lonnie
Welch,“Scalableparallel word search in
multicore/multiprocessor systems” TheJournal
of Supercomputing, 51.1, 58-75, 2010.
[4]Rabenseifner, Rolf, Georg Hager, and

Gabriele Jost, “Hybrid MPI/OpenMPparallel
programming on clusters of multi-core SMP
nodes”, Parallel, Distributedand Network-
based Processing, 2009 17th Euromicro
International Conferenceon. IEEE, 2009.
[5]JN Rutanshu Jhaveri, Narayanan
Prasanth,“Parallel and Serial Graph Coloring
implementations with Tabu Search Method”,
International Journal of Recent Technology
and Engineering, 8 (2), 1050-1056, 2019.
[6]W Sureshkumar, K Mahalingam, R
Rama,“Pictures and chomsky languages in
array P system”, International Conference on
Membrane Computing, Springer LNCS, 277-
289, 2017.

