

A STUDY ON IMPLEMENTATION OF LEAN PRINCIPLES AND PRACTICES IN A CONSTRUCTION PROJECT

Pramodh P¹, Sundip Shenoy²

¹M-Tech in Construction Technology, Department of Civil Engineering, NMAMIT, Nitte ²Assistant Professor, Department of Civil Engineering, NMAMIT, Nitte ¹pramodh.pn25@gmail.com, ²sundipshenoy@nitte.edu.in

Abstract

Modern Projects in India are facing various delays and other time consuming issues, such as delay in completion, repeated works, poor workmanship these things in return affects not only the project but also the value of the firm. The aim of the study is to implement the lean tool for overcoming these problems, based on the literature studies, the suitable lean tool identified was Last Planner System. The strategy undertaken to implement LPS is the collection of various data, preparation of schedules, interactions and discussions with the engineers and the workers. Keywords

Last Planner System, Percent Plan Complete, Schedule, Grade Separator

Introduction

India as a developing country faces many problems in construction industry such as lack of detailed and documented previous data concern risks and lack of adapting modern techniques. Projects have been considered as temporary based production systems, which need to be designed, planned, produced and delivered within a specified time. Fast track projects with long, complicated supply chains involving many players and subject to multiple, extensive process design changes have complex flow management that has failed miserably. As a result, the industry is characterized by delays and often has suffered cost and time overruns. In general, a very high level of wastes/nonvalue added activities is confirmed to exist in the construction industry. Several studies from various countries have confirmed that, wastes in construction industry represent a relatively large percentage of production cost The existences of significant number of wastes in the construction have depleted overall performance and productivity of the industry, and certain serious measures have to be taken to rectify the current situation. One of innovative approach in this regard is "Lean Construction which was introduced to construction industry in 1990s based on a successful manufacturing theory, i.e. lean production.

It has been contended by the Lean Construction Institute that about 57% of productive time waste can be found in the construction industry The conventional project management approaches have inadequacies in resolving the problems in the industry. In the United States, studies have been carried out by CII (Construction Industry Institute), which estimate that between 25% and 50% of the cost of construction Corresponds to waste due to the inefficiency of the traditional management system. According to (LCI) Lean Construction Institute, The construction industry is characterized by a ratio production/waste higher than that of the manufacturing industry. Nevertheless, lean manufacturing principles and techniques provide the foundations for minimization or total elimination of the waste faced by the industry. Lean construction has change the traditional view of labor flow, work flow reliability, and gives the value added construction.

Lean emerged in the late 1980's from Toyota Production System, and has since its conception become the normative management principle. Toyota was able to produce better quality products with fewer resources than the competition through focusing on the flow and reducing waste.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

The fundamental differences between the construction industry and the traditional manufacturing industry require a different way of applying Lean. The construction industry is characterized by on-site projects, leading to high development costs and a lower degree of standardization. Lean Construction is a recent development in how to reduce waste and manage the flow, and it addresses the needs of the construction industry. Much attention has been placed on the unique characteristics of construction. This indicates the need for addressing different kinds of construction projects in order to capture their unique characteristics.

Lean is a term to describe an effective, highperformance method for managing organisations and delivering their core purpose in the most efficient and effective manner while continuing to develop for a sustainable future. Lean is an ethos, a way of doing business. It seeks to maximise the generation of customer value by driving out all forms of waste, ensuring 'right first time' quality, reducing timescales and minimising cost.

I. LITERATURE SURVEY

Sheila Belayuthan et al. (2016) : This research observes to seamlessly improve the manufacturing (time and cost) and environmental (sediment pollutants) variables via making use of the concept of lean production towards achieving a cleaner earthworks operation. A case study on the project located at Rauls, a place in Malaysia is considered where, a lean based methodology proposed by "Womack and Jones" that mixes special statistics series techniques (interview, statement, web site report) are used. Findings of the observe recommend that lean allows smooth. Positive improvements were found in phrases of time and price reduction via 42.7% and 24.9% respectively. The environmental element, Rainfall Erosivity is decreased by 41.8%, therefore reducing the danger of soil erosion and sediment production. Ultimately, the proposed methodology may want to improve both seamlessly dimensions of manufacturing and environment at its supply, which satisfies the intention for purifier earthworks operation.

S M Abdul Mannan Hussain et al ; The objective of the project was to improve site management, with the implementation of lean

tool In their research LPS was implemented to the residential building. Researchers divided the project methodology into three phase's preimplementation, implementation, postimplementation, these phases had many procedures such as data collection, questioner surveying, direct and indirect observation etc. researchers concluded that implementing LPS project can be completed two months before the actual duration, reduction in overall cost of the project and increase of quality in performance can be identified

Aakanksha Ingle et al: This paper highlights the cost and benefits of the potential contribution of lean construction to the achievement of productivity enhancement and waste minimization in construction industry. There is need for waste minimization and enhancement of productivity in construction activity. Productivity is critical determinant of cost efficiency. Case study method, it is an exploratory study. In this paper researcher 's wants to explore lean construction concept and its applicability in Indian construction industry by using Five-S model, by survey on L&T and few best practices done in L&T were listed.

Gholamreza Heravi and Mehdi Rashid : The objective of the study was to develop the methods for implementing and developing the lean construction plan (LCP) in this study LCP was developed through proper approach & defining the non-value adding activity and choosing the appropriate lean tool. To implement the developed plan, an evaluation of the progressive improvement of repetitive subprojects is utilized as an effective approach. In this research a real project was taken for the application of lean, when the tools were implemented and validated the performance of the project was increased by 19% and they mentioned that LCP cannot be easily implanted easily it requires the proper planning.

II. OBJECTIVES

- 1. To develop master plan and schedule for the project.
- 2. To reduce cost and duration of the project

III. SCOPE OF THE PROJECT

To deliver the construction process by providing best quality, lowest cost and shortest lead time through elimination of Wastes.

IV. METHADOLOGY

Literature Study; Study of previous journal paper was carried out

Data collection and Analysis; This step involves the site visits, interaction with head engineers, site engineers, and supervisors and collecting of data like number of activities in each event, expected duration of each activities, resource needed and availability of resources on site and also to observe the ongoing work.

Work Breakdown Structure; WBS is a hierarchy of work that must be accomplished to complete a project. Each project has its own WBS. Each WBS element may contain more detailed WBS levels, activities, or both.

Duration Calculation; Calculating the number of days required to complete the task.

Scheduling of Activities; Scheduling is a basic management tool, which consists of tasks events and other resource required. Schedule can be two types short term schedule and long term scheduling

Implementation of lean Principles; The lean principles can only be applied fully and effectively in construction by focusing on improving the whole process. This means all parties have to be committed, involved, and work to overcome obstacles that may arise from traditional contractual arrangements

Comparison of Results; this step involves comparing the traditional construction with the modern construction after implementing the lean principles.

V. LEAN IMPLEMENTATION

Master Schedule ;The master schedule is produced during front end planning and represents the milestone level of project planning specifying the timing of the various phases a project goes through.

		perator	Classic Schedule [ayout	_	-	19-Feb-2019 12-4
ivity ID		Activity Name	Original Duration	Start	Finish	Predecessors	Successors
N N	o ossoc	onstruction of Grade Seperator	478d	30-Mar-2018	22-Jun-2019		
	COGSSC.	Initial Arrangements	46d	30-Mar-2018	11-May-2018		
U	a A1000	Date of Commencement	PL	30-Mar-2018"	30-Mar-2018		A1010, A1020
U	a A1010	Mobilisation of manpower and machinery	B	30-Mar-2018	07-Apr-2018	A1000	
U	a 1020	Establishment of Site office, lab, Plants	P8	30-Mar-2018	07-Apr-2018	A1000	A1030
U	a A1030	Survey and Center line Setting out	P8	30-Mar-2018	07-Apr-2018	A1020	A1040, A1050
0	a A1040	Approval of materials and design mixes	30d	30-Mar-2018	02-May-2018	A1030	
U	a 1050	Soil Investigations	304	07-Apr-2018	05-May-2018	A1030	A1060
U	a 1060	Approval of designs & drawings	304	13-Apr-2018	11-May-2018	A1050	A1070
d,	COGSSC	Construction of Bi-Directional flyover	432d	11-May-2018	22-Jun-2019		
-	COGSSC.2	1 Sub Structure	193d	11-May-2018	10-Nov-2018		
		.2.1.1 Pier (AP-1)	<u>75d</u>	11-May-2018	20-Jul-2018		
	A1070	Pling	15d	11-May-2018	25-May-2018	A1060	A1080, A1110
	A1080	Pile cap	P/	13-Jun-2018	20-Jun-2018	A1070	A1090
	A1090	Pier and Pier cap	15d	02-Jul-2018	16-Jul-2018	A1080	A1100, A1710
	A1100	Pedestial	24	16-Jul-2018	20-Jul-2018	A1090	
		.2.1.2 Pier (P-1)	75d	11-May-2018	20-Jul-2018		
	A1110	Pling	15d	11-May-2018	25-May-2018	A1070	A1120, A1150
	🚍 A1120	Pile cap	J d	13-Jun-2018	20-Jun-2018	A1110	A1130
	A1130	Pier and Pier cap	15d	02-Jul-2018	16-Jul-2018	A1120	A1140, A1750
	🚍 A1140	Pedestial	5d	16-Jul-2018	20-Jul-2018	A1130	
		.2.1.3 Pier (P-2)	75d	25-May-2018	03-Aug-2018		
	A1150	Pling	15d	25-May-2018	08-Jun-2018	A1110	A1160, A1190
	A1160	Pile cap	P/	27-Jun-2018	04-Jul-2018	A1150	A1170
	🚍 A1170	Pier and Pier cap	15d	16-Jul-2018	30-Jul-2018	A1160	A1180, A1790
	A1180	Pedestial	29	30-Jul-2018	03-Aug-2018	A1170	
		.2.1.4 Pier (P.3)	75d	25-May-2018	03-Aug-2018		
	🚍 A1190	Pling	15d	25-May-2018	08-Jun-2018	A1150	A1200, A1230
	A1200	Pile can	P/2	27.hun.2018	D4-1-1-2018	A1100	11010

Figure 1 Master Schedule

Last Planner System

Ballard introduced a new method for applying lean in construction the Last Planner System (LPS). This model is based in a short term planning and control of operations approach and has been one of the most used models around constructions

The Last Planner planning cycle comprises the master schedule covering an entire project, the detailed phase schedule emerging from collaborative planning, the look-ahead plan with constraints analysis and the weekly work plan with measured percent plan complete.

The Master schedule: Selects the sequence of activities and identifies all the work packages on which obstacles should be removed and is elaborated by all the parties involved in the construction; it defines what should be done.

Look ahead Plan: By having an outlook up to four weeks ahead, this plan controls workflow ensuring the workable backlog is sufficient for an activity to be completed; it defines what can be done.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

Increasing

level of detail

Loo	uk ahead Schedule			Cla	Classic Schedule Layout		
#	\$ SLNO		Activity Name	Activity ID	Original Duration	Start	Finish
1	1	- COG	SASC 3 Look ahead	Schedule	38d	27-Feb-1908	02-Apr-19 19
2		C 0	GSASC 3.1 PILEING		280	27-Feb-1908	23-Mar-19 19
3			Marking and Tripod Erection	A1000	10	27-Feb-1908	27-Feb-19 15
4			Chiseling	A1010	50	28-Feb-1908	04-Mar-19 19
5			Cage installation	A1020	10	05-Mar-1908	05-Mar-19 19
6			Concreting	A1030	10	06-Mar-1908	06-Mar-19 13
7			Excaving	A1040	10	14-Mar-1914	15-Mar-19 13
8			Plie Chipping	A1350	3d	15-Mar-1914	18-Mar-19 19
9			BarBending	A1360	4d	19-Mar-1914	22-Mar-19 13
10			Concreting	A1370	10	23-Mar-1914	23-Mar-19 19
11		- CO	GSASC 3.2 PEDESTIA	L	6d	25-Mar-1914	30-Mar-19 13
12			Marking	A1050	Od	25-Mar-1914	25-Mar-19 17
13			Insering Bolt and Marking	A1060	10	25-Mar-1917	26-Mar-19 13
14			Botweiding	A1070	10	29-Mar-1914	30-Mar-19 13
15			Concreting	A1080	10	26-Mar-1914	27-Mar-19 13
16		🐴 со	GSASC 3.3 PIER AND	PIER CAP	190	27-Feb-1908	15-Mar-19 19
17			Marking	A1110	10	27-Feb-1908	27-Feb-19 13
18			Cutting	A1120	4d	28-Feb-1908	02-Mar-19 19
19			Assembeling	A1130	10	04-Mar-1908	04-Mar-19 19
20			Welding	A1140	50	05-Mar-1908	08-Mar-19 19
21			Grinding	A1150	10	11-Mar-1908	11-Mar-19 13
22			Blasing and Paining	A1160	10	14-Mar-1908	14-Mar-19 19
23			Erection	A1170	10	15-Mar-1908	15-Mar-19 19
24		🐴 CO	GSASC 3.5 Beaing An	d Anchar Plate	3d	27-Feb-1908	28-Feb-19 19
25			Marking and Setting Center Po	A1330	10	27-Feb-1908	27-Feb-19 19
26			Welding	A1340	10	28-Feb-1908	28-Feb-19 19
27		- CO	GSASC 3.4 END DIAPI	HRAGAM AND GIRD	38d	27-Feb-1908	02-Apr-19 19
28			Marking	A1200	10	27-Feb-1908	27-Feb-19 19
29			Cutting	A1210	50	01-Mar-1908	05-Mar-19 19
30			Driling	A1220	4d	06-Mar-1908	08-Mar-19 19
31			Welding	A1230	130	12-Mar-1908	22-Mar-19 19
32			Grinding	A1240	3d	23-Mar-1908	25-Mar-19 19
33			Blasting and Painting	A1250	3d	27-Mar-1908	28-Mar-19 19
34			Erection	A12560	50	29-Mar-1908	02-Apr-19 19

Figure 2 Look ahead schedule

Weekly Work Plan (WWP): Looks at shortterm perspective and selects sequences and sizes of the work of the following week, detailing flows verification, and activities executions and respective responsible; it then defines what will be done.

We	ekly S	Schedule 2			Classic Schedule Layout			
#	SLN	Ю	AdivityName	Activity ID	Original Duration	Start	Finish	
1	1	- COG	S2W Weekly Sche	dule 2	7d	06-Mar-1908	12-Mar-19 15	
2	Г	🖣 CO	GS2W.1 Pileing		1d	06-Mar-1908	08-Mar-19 17	
3	1		Concreting	A1000	1d	06-Mar-1908	06-Mar-1917	
4		🐴 CO	GS2W.3 Pier and Pi	ier Cap	5d	06-Mar-1908	09-Mar-19 19	
5	1		Welding	A1020	3d	06-Mar-1908	08-Mar-19 12	
6			Grinding	A1040	1d	09-Mar-1910	09-Mar-19 19	
7		🖥 CO	GS2W.5 End Diaph	ragram and Girders	7d	06-Mar-1908	12-Mar-19 15	
8			Driling	A1060	3d	06-Mar-1908	08-Mar-19 12	
9	1		Welding	A1070	1d	11-Mar-1917	12-Mar-19 15	

Figure 3 Weekly work Plan

Percent Plan Complete

PPC (percent plan complete) is the number of planned activities completed divided by the total number of planned activities, expressed as a percentage. PPC measures whether the planning system is able to reliably anticipate what will actually be done.

Percent Plan Complete (PPC %) = Number of tasks completed × 100 Total number of Activities Master Scheduling Set Milestones SHOULD Front end Planning **Phase Scheduling** Specify handoffs Collaborative planning Reverse phase scheduling CAN Lookahead Planning Longer Make ready & remove constraints Identify Responsibilities Resource Management Information planning horizon WILL Production Planning Weekly Work Plan & Percent Plan Complete (PPC) Weekly Work Assignme nents Reliable promising Measure PPC 9 Act on reasons of plan failure DID Learning

Figure 4 Work flow of LPS

VI. PROJECT OUTCOMES

Weeks	Total no of Activities	No. of Tasks Completed	No. of Incomplete tasks	PPC
27/2/2019- 5/03/2019	11	8	3	72.7
6/03/2019 - 12/03/2019	5	3	2	60.0
13/03/2019 - 19/03/2019	6	5	1	83.3
20/03/2019 - 26/03/2019	6	6	0	100.0
27/03/2019 - 03/04/2019	4	3	1	75.0
	32	25	7	78.1

Figure 5 PPC values

Figure 6 Comparison of PPC

Figure 7 Reasons for delay

VII. CONCLUSION

- The Master Schedule of the project was developed which includes the total number of activities that is 155 and the critical activities found to be 23
- Implementation of LPS reduced the cost and time of the project
- Although the project suffered from shortage of materials, the problem of material shortage was overcome by engaging in short term and look ahead planning together with regularly doing a constraint analysis to envisage possible constraints to the project before they occur

VIII. ACKNOWLEDGEMENT

My most sincere and grateful acknowledgements to the holy sanctum of N.M.A.M.I.T. Nitte which is helping me to pursue the M.Tech., Construction Technology, thus helping me to make a bright career in engineering.

I express sincere gratitude to Mr. Sundip Shenoy, Assistant professor, Department of Civil Engineering, NMAMIT, Nitte Educational Trust for his kind support and guidance. I am grateful to Dr. UdayaKumar G, HOD, Department of Civil Engineering, NMAMIT, Nitte Educational Trust for his kind support.

IX. REFERENCE

- 1. Usama Hamed Issa "Implementation of lean construction techniques for minimizing the risks effect on project construction time" December 2013, Volume-52
- Huseyin erol, Irem Dikmen, M. Talat birgonul "Measuring the impact of lean construction practices on project duration and variability: a simulationbased study on residential buildings" March 2015, Volume-23.
- 3. Aakanksha Ingle, Prof Ashish P Waghmare "Advances in Construction: Lean Construction for Productivity enhancement and waste minimization" November 2015, Volume-02
- 4. Sheila Belayutham, Vicente A. Gonzalez, Tak Wing Yiu. "Leanbased clean earthworks operation" January 2016, Volume-142.

- Shuquan Lia, Xiuyu Wua, Yuan Zhouc, Xin Liub. "A study on the evaluation of implementation level of lean construction in two Chinese firms" May 2016, volume-71
- 6. Richard Hannis Anash "Lean Construction Tools" September 2016., International Conference on Industrial Engineering and Operations Management Detroit, Michigan
- 7. Gholamreza Heravi, Mehdi Rashid "Developing an Approach to Develop and Validate a LeanConstruction Plan Using Performance Evaluation ofRepetitive Subprojects"., Nov 2017.
- Chien-Ho Ko , Neng-Fu Chung " Lean Design Process " 2017 American Society of Civil Engineers.
- S M Abdul Mannan Hussain , Dr. Seshadri Sekhar T , Dr B.S.R.K Prasad "Implementation of Last Planner System for Improving the Construction Process" 2017., International Journal of Engineering and Technology (IJET).
- S. A. Abbasian Hosseini A. Nikakhtar, K. Y. Wong, A. Zavichi "Implementing Lean Construction Theory to Construction Processes' Waste Management".
- 11. Tejas Vidhate1, Ashwini salunkhe
 " General overview of Lean Management in Construction Industry" International Research Journal of Engineering and Technology (IRJET) 2018
- 12. Saheed O, Ajayi, Lukumon O., Waste efficient materials for construction projects., Waste Management (2018) ., Elsiver, 1-10.
- Piotr Nowotarskia., Jerzy Pasawskia., Jakub Matyjaa., Improving Construction Processes Using Lean Management Methodologies., Procedia Engineering, Science Direct 1611037 – 1042, Science Direct
- 14. Amin Nikakhtar., Alireza Abbasian Hosseini.. Kuan Yew Wong. Application of lean construction principles to reduce construction process waste using computer stimulation; a study., J. and Operations case management. Vol 461-480. 20,