

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-5, 2019

22

 REVIEW ON FAST COMPLEX MULTIPLICATION

ALGORITHMS AND IMPLEMENTATION
1 L . Malathi, 2 Dr. A. Bharathi, 3 Dr. A. N. Jayanthi

1 Assistant Professor, Sri Ramakrishna Institute of Technology, Department of ECE, India
2 Professor, Bannari Amman Institute of Technology, Department of IT, India

3 Associate Professor, Sri Ramakrishna Institute of Technology, Department of ECE, India

Abstract
Multipliers are key components of many high
performance systems such as FIR filters,
microprocessor, digital signal processor, etc.
The performance of the system is determined
based on the performance of the multiplier.
Complex number operations are playing a
major role in many digital signal processing
based applications. The overall performance
of the multiplication is based on repeated
addition and subtraction. There is the
possibility to improve the performance of
multiplier is only by concentrate on the
factors of delay, adders, subtractions and
thereby speed and accuracy will be increased.
While involved in complex number
multiplication
Index Terms: RCBNS, Algorithms, FFT

I. INTRODUCTION
Most of the algorithms related to efficient

multiplies are reviewed. Fast Fourier transforms
are widely used for applications in engineering,
science, and mathematics. The basic ideas were
popularized in 1965, but some algorithms had
been derived as early as 1805. In 1994, Gilbert
Strang [9] [10] [11] described the FFT as "the
most important numerical algorithm of our
lifetime", and it was included in Top 10
Algorithms of 20th Century by the
IEEE journal Computing in Science &
Engineering [5].

The best-known FFT algorithms depend upon
the factorization of N, but there are FFTs with
O(N log N) complexity for all N, even
for prime N. Many FFT algorithms only depend

on the fact that is an N-th primitive
root of unity, and thus can be applied to
analogous transforms over any finite field, such
as number-theoretic transforms. Since the
inverse DFT is the same as the DFT, but with the
opposite sign in the exponent and a 1/N factor,
any FFT algorithm can easily be adapted for it.

FFT-related algorithms: Cooley–Tukey FFT
algorithm, Prime-factor FFT algorithm, Bruun's
FFT algorithm, Rader's FFT algorithm,
Bluestein's FFT algorithm, Goertzel algorithm –
Computes individual terms of discrete Fourier
transform are may be permitted in complex
multiplication which are discussed in the
following.

II. REVIEW ON METHODS
A. Divide and Conquer Method
The divide-and-conquer paradigm is often

used to find the optimal solution of a problem. Its
basic idea is to decompose a given problem into
two or more similar, but simpler, sub problems,
to solve them in turn, and to compose their
solutions to solve the given problem. Problems
of sufficient simplicity are solved directly.

https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Applications
https://en.wikipedia.org/wiki/Gilbert_Strang
https://en.wikipedia.org/wiki/Gilbert_Strang
https://en.wikipedia.org/wiki/Gilbert_Strang
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/w/index.php?title=Computing_in_Science_%26_Engineering&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Computing_in_Science_%26_Engineering&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Computing_in_Science_%26_Engineering&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fast_Fourier_transform#cite_note-Dongarra_Sullivan_2000-5
https://en.wikipedia.org/wiki/Factorization
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Primitive_root_of_unity
https://en.wikipedia.org/wiki/Primitive_root_of_unity
https://en.wikipedia.org/wiki/Primitive_root_of_unity
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Number-theoretic_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm
https://en.wikipedia.org/wiki/Bruun%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Bruun%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Bruun%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Bluestein%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Goertzel_algorithm

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-5, 2019

23

Fig. 1. Basic Iterative Multiplier

An important application of divide and
conquer is in optimization, where if the search
space is reduced by a constant factor at each step,
the overall algorithm has the same asymptotic
complexity as the pruning step, with the constant
depending on the reduced factor.

B. Redundant Complex Binary Number
System
A Redundant Complex Binary Number

System (RCBNS) consists of both real and
imaginary-radix number systems that form a
redundant integer digit set. This system is
formed by using complex radix of (-1+j) and a
digit set of α = 3, where α assumes a value of -3,
-2, -1, 0, 1, 2, 3. The arithmetic operations of
complex numbers with this system treat the real
and imaginary parts as one unit. The carry-free
addition has the advantage of Redundancy in
number representation in the arithmetic
operations.

Results of the arithmetic operations are in the
RCBNS form. The two methods for conversion
from the RCBNS form to the standard binary
number form have been presented. In this paper
the RCBNS reduces the number of steps required
to perform complex number arithmetic
operations, thus enhancing the speed.

III. REVIEW ON ALGORITHMS
A. Cooley–Tukey Algorithm
The Cooley–Tukey algorithm, named after J.

W. Cooley and John Tukey, is the most
common fast Fourier transform (FFT) algorithm.
It re-expresses the discrete Fourier
transform (DFT) of an
arbitrary composite size N = N1N2 in terms

of N1 smaller DFTs of sizes N2, recursively, to
reduce the computation time to O(N log N) for
highly composite N (smooth numbers). Because
of the algorithm's importance, specific variants
and implementation styles have become known
by their own names, as described below.

Because of the Cooley–Tukey algorithm
breaks the DFT into smaller DFTs, it can be
combined arbitrarily with any other algorithm for
the DFT. For
example, Rader's or Bluestein's algorithm can be
used to handle large prime factors that cannot be
decomposed by Cooley–Tukey or
the prime-factor algorithm can be exploited for
greater efficiency in separating out relatively
prime factors.

The algorithm, along with its recursive
application, was invented by Carl Friedrich
Gauss. Cooley and Tukey independently
rediscovered and popularized it 160 years later.

A radix-2 decimation-in-time (DIT) FFT is the
simplest and most common form of the
Cooley–Tukey algorithm, although highly
optimized Cooley–Tukey implementations
typically use other forms of the algorithm as
described below. Radix-2 DIT divides a DFT of
size N into two interleaved DFTs (hence the
name "radix-2") of size N/2 with each recursive
stage.

The discrete Fourier transform (DFT) is
defined by the formula:

The radix-2 DIT algorithm rearranges the DFT
of the function xn into two parts: a sum over the
even-numbered indices n=2m and a sum over
the odd-numbered indices n=2m+1:

https://en.wikipedia.org/wiki/James_Cooley
https://en.wikipedia.org/wiki/James_Cooley
https://en.wikipedia.org/wiki/John_Tukey
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Smooth_number
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Bluestein%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm
https://en.wikipedia.org/wiki/Relatively_prime
https://en.wikipedia.org/wiki/Relatively_prime
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-5, 2019

24

B. Prime-Factor Algorithm (PFA)

The prime-factor algorithm (PFA), also called
the Good–Thomas algorithm (1958/1963), is
a fast Fourier transform (FFT) algorithm that
re-expresses the discrete Fourier
transform (DFT) of a size N = N1N2 as a
two-dimensional N1×N2 DFT, but only for the
case where N1 and N2 are relatively prime.
These smaller transforms of size N1 and N2 can
then be evaluated by applying
PFA recursively or by using some other FFT
algorithm.

PFA should not be confused with
the mixed-radix generalization of the
popular Cooley–Tukey algorithm, which also
subdivides a DFT of size N = N1N2 into smaller
transforms of size N1 and N2. The latter
algorithm can use any factors (not necessarily
relatively prime), but it has the disadvantage that
it also requires extra multiplications by roots of
unity called twiddle factors, in addition to the
smaller transforms. On the other hand, PFA has
the disadvantages that it only works for relatively
prime factors (e.g. it is useless
for power-of-two sizes) and that it requires a
more complicated re-indexing of the data based
on the Chinese remainder theorem (CRT).
However, that PFA can be combined with
mixed-radix Cooley–Tukey, with the former
factorizing N into relatively prime components
and the latter handling repeated factors.

Recall that the DFT is defined by the formula:

The PFA involves a re-indexing of the input and
output arrays, which when substituted into the
DFT formula transforms it into two nested DFTs
(a two-dimensional DFT).

(i) Re-indexing
Suppose that N = N1N2, where N1 and N2 are

relatively prime. In this case, we can define
a re-indexing of the input n and output k by:

(ii) DFT re-expression
The above re-indexing is then substituted into

the formula for the DFT, and in particular into
the product nk in the exponent. Because e2πi = 1,
this exponent is evaluated modulo N:
any N1N2 = N cross term in the nk product can
be set to zero. (Similarly, Xk and xn are
implicitly periodic in N, so their subscripts are
evaluated modulo N.) The remaining terms give:

The inner and outer sums are simply DFTs of
size N2 and N1, respectively.

(Here, N1
−1 N1 is unity when evaluated

modulo N2 in the inner sum's exponent, and vice
versa for the outer sum's exponent.)

C. BRUUN'S ALGORITHM
Bruun's algorithm is a fast Fourier

transform (FFT) algorithm based on an unusual
recursive polynomial-factorization approach,
proposed for powers of two by G. Bruun in 1978
and generalized to arbitrary even composite sizes
by H. Murakami in 1996. Because its operations
involve only real coefficients until the last
computation stage, it was initially proposed as a
way to efficiently compute the discrete Fourier
transform (DFT) of real data. Bruun's algorithm
has not seen widespread use, however, as
approaches based on the ordinary Cooley–Tukey
FFT algorithm have been successfully adapted to
real data with at least as much efficiency.
Furthermore, there is evidence that Bruun's
algorithm may be intrinsically less accurate than
Cooley–Tukey in the face of finite numerical
precision (Storn, 1993).
(i) Brunn factorization

The basic Bruun algorithm for powers of
two N=2n factorizes z2n-1 recursively via the
rules:

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Relatively_prime
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Twiddle_factor
https://en.wikipedia.org/wiki/Power_of_two
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Power_of_two
https://en.wikipedia.org/wiki/Power_of_two

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-5, 2019

25

where a is a real constant with
 then

D. Rader's Algorithm

Rader's algorithm (1968), named for Charles
M. Rader of MIT Lincoln Laboratory, is a fast
Fourier transform (FFT) algorithm that
computes the discrete Fourier transform (DFT)
of prime sizes by re-expressing the DFT as a
cyclic convolution (the other algorithm for FFTs
of prime sizes, Bluestein's algorithm, also works
by rewriting the DFT as a convolution).

Since Rader's algorithm only depends upon the
periodicity of the DFT kernel, it is directly
applicable to any other transform (of prime
order) with a similar property, such as
a number-theoretic transform or the discrete
Hartley transform.

The algorithm can be modified to gain a factor of
two savings for the case of DFTs of real data,
using a slightly modified
re-indexing/permutation to obtain two half-size
cyclic convolutions of real data;[2] an alternative
adaptation for DFTs of real data uses the discrete
Hartley transform.[3]

rewrite the DFT using these new
indices p and q as:
E. Bluestein's FFT algorithm
Beginning with the DFT

F. Goertzel Algorithm
The Goertzel algorithm [7] is a technique

in digital signal processing (DSP) that provides a
means for efficient evaluation of individual
terms of the discrete Fourier transform (DFT),
thus making it useful in certain practical
applications, such as recognition of DTMF tones
produced by the buttons pushed on a telephone
keypad. The algorithm was first described
by Gerald Goertzel in 1958.[1]

Like the DFT, the Goertzel algorithm analyses
one selectable frequency component from
a discrete signal.[2][3][4] Unlike direct DFT
calculations, the Goertzel algorithm applies a
single real-valued coefficient at each iteration,
using real-valued arithmetic for real-valued input
sequences. For covering a full spectrum, the
Goertzel algorithm has a higher order of
complexity than fast Fourier transform (FFT)
algorithms, but for computing a small number of
selected frequency components, it is more
numerically efficient. The simple structure of the
Goertzel algorithm makes it well suited to small
processors and embedded applications, though
not limited to these.

(i) DFT computations
For the important case of computing a DFT term,
the following special restrictions are applied.
The frequencies chosen for the Goertzel analysis
are restricted to the special form

The index number indicating the "frequency
bin" of the DFT is selected from the set of index
numbers

https://en.wikipedia.org/wiki/MIT_Lincoln_Laboratory
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Bluestein%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Number-theoretic_transform
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm#cite_note-2
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm#cite_note-Frigo05-3
https://en.wikipedia.org/wiki/Bluestein%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Dual-tone_multi-frequency_signaling
https://en.wikipedia.org/wiki/Gerald_Goertzel
https://en.wikipedia.org/wiki/Goertzel_algorithm#cite_note-1
https://en.wikipedia.org/wiki/Discrete_signal
https://en.wikipedia.org/wiki/Goertzel_algorithm#cite_note-2
https://en.wikipedia.org/wiki/Goertzel_algorithm#cite_note-2
https://en.wikipedia.org/wiki/Goertzel_algorithm#cite_note-2
https://en.wikipedia.org/wiki/Goertzel_algorithm#cite_note-4
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Fast_Fourier_transform

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-5, 2019

26

Making these substitutions into equation (6) and

observing that the term

G. Gauss Algorithm

Re + j Im = (W + j X) (Y + j Z)
 = (WY-XZ) + j (XY + WZ)

Multiply W X

Y WY jXY

jZ jWZ -XZ

As per Gauss’s algorithm [1][2][3] for

complex number multiplication gives two
separate equations to calculate real and
imaginary part of the final result. From eqn. the
real part of the output can be given by (WY -
XZ), and the imaginary part of the result can be
computed using (XY + WZ). Thus four separate
multiplications and are required to produce the
real as well as imaginary part numbers.

H. Complex Multiplication Algorithm

This algorithm requires three multiplications
and five additions or subtractions .In 1963, Peter
Ungar suggested setting m to i to obtain a similar
reduction in the complex multiplication
algorithm. To multiply (a + b i) · (c + d i), follow
these steps:

1. Compute b · d, call the result F

2. Compute a · c, call the result G

3. Compute (a + b) · (c + d), call the
result H

4. The imaginary part of the result
is K = H − F − G = a · d + b · c

5. The real part of the result
is G − F = a · c - b · d

I. Karatsuba Multiplication
The system which needs to multiply

numbers in the range of several thousand digits,
such as computer algebra
systems and bignum libraries, long
multiplication is too slow. These systems may
employ Karatsuba multiplication, which was
discovered in 1960 (published in 1962). The
heart of Karatsuba's method lies in the
observation that two-digit multiplication can be
done with only three rather than the four
multiplications classically required. This is an
example of what is now called a divide and
conquer algorithm. Suppose we want to multiply
two 2-digit base-m numbers: x1 m + x2 and y1 m
+ y2:

1. Compute x1 · y1, call the result F
2. Compute x2 · y2, call the result G
3. Compute (x1 + x2) · (y1 + y2), call the

result H
4. Compute H − F − G, call the result K;

this number is equal to x1 · y2 + x2 · y1
5. Compute F · m2 + K · m + G.

To compute these three products of m-digit

numbers, we can employ the same trick again,
effectively using recursion. Once the numbers
are computed, we need to add them together
(steps 4 and 5), which takes about n operations.

Karatsuba multiplication has a time

complexity of O(nlog
2

3) ≈ O(n1.585), making this
method significantly faster than long
multiplication. Because of the overhead of
recursion, Karatsuba's multiplication is slower
than long multiplication for small values of n;
typical implementations therefore switch to long
multiplication if n is below some threshold.

Karatsuba's algorithm is the first known
algorithm for multiplication that is
asymptotically faster than long
multiplication,[16] and can thus be viewed as the
starting point for the theory of fast
multiplications.
J. Rader's Algorithm
Rader's algorithm (1968),[1] named for Charles
M. Rader of MIT Lincoln Laboratory, is a fast
Fourier transform (FFT) algorithm that
computes the discrete Fourier transform (DFT)
of prime sizes by re-expressing the DFT as a
cyclic convolution (the other algorithm for FFTs

https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Bignum
https://en.wikipedia.org/wiki/Anatoly_Karatsuba
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Multiplication_algorithm#cite_note-16
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm#cite_note-1
https://en.wikipedia.org/wiki/MIT_Lincoln_Laboratory
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Convolution

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-5, 2019

27

of prime sizes, Bluestein's algorithm, also works
by rewriting the DFT as a convolution).

Since Rader's algorithm only depends upon the
periodicity of the DFT kernel, it is directly
applicable to any other transform (of prime
order) with a similar property, such as
a number-theoretic transform or the discrete
Hartley transform.

The algorithm can be modified to gain a factor of
two savings for the case of DFTs of real data,
using a slightly modified
re-indexing/permutation to obtain two half-size
cyclic convolutions of real data;[2] an alternative
adaptation for DFTs of real data uses thediscrete
Hartley transform.[3]

rewrite the DFT using these new

indices p and q as:

IV. CONCLUSION
In FFT, complex multiplication is play an

important role. Hence, if suitable algorithm
included then thereby the parameters like power,
delay and area can be reduced in order to design a
speed systems which can be applied in various
applications like digital communication, DSP
applications and wherever there is a need of
complex multiplication.

REFERENCES
[1] H. S. Dhillon, et al, “A Reduced Bit
Multiplication Algorithm for Digital
Arithmetic,” International Journal of
Computational and Mathematical Sciences,
2008, pp 64-69.

[2] Man Yan Kong, J.M. Pierre, and Dhamin
Al-Khalili, “Efficient FPGA Implimentation of
Complex Multipliers Using the Logarithmic
Number System,” 2008 IEEE. Pp 3154-3157.

[3] Langlois Rizalafande Che Ismail and Razaidi
Hussin, “High Performance Complex Number
Multiplier Using Booth-Wallace

Algorithm,”ICSE2006 Proc. 2006, Kuala
Lumpur, Malaysia, pp 786-790.
 [4] Frigo, Matteo; Johnson, Steven G.
(2005). "The Design and Implementation of
FFTW3" (PDF). Proceedings of the
IEEE. 93(2):216–231. CiteSeerX 10.1.1.66.309
7.doi:10.1109/jproc.2004.840301.

 [5] Dongarra, Jack; Sullivan, Francis (January
2000). "Guest Editors Introduction to the top 10
algorithms", Computing in Science
Engineering. 2 (1):22–23. doi:10.1109/MCISE.
2000.814652.ISSN 1521-9615.

[6] Matteo Frigo and Steven G. Johnson, "The
Design and Implementation of
FFTW3," Proceedings of the IEEE 93 (2),
216–231 (2005).

[7] Goertzel, G. (January 1958), "An Algorithm
for the Evaluation of Finite Trigonometric
Series", American Mathematical
Monthly, 65(1):34–35, doi:10.2307/2310304, J
STOR 2310304

[8] H. Zaini, Florida Inst. of Technol.,
Melbourne, FL, USA, R.G. Deshmukh, Florida
Inst. of Technol., Melbourne, FL, USA
“Complex number representation in RCBNS
form for arithmetic operations and conversion of
the result into standard binary form”, IEEE
SoutheastCon, 2003. Proceedings. 03 March
2004, Print ISBN: 0-7803-7856-3,
DOI: 10.1109/SECON.2003.1268439,
Publisher: IEEE, INSPEC Accession
Number: 8211949

 [9] Heideman, Michael T.; Johnson, Don
H.; Burrus, Charles Sidney (1984). "Gauss and
the history of the fast Fourier
transform" (PDF). IEEE ASSP Magazine. 1 (4):
14–21.doi:10.1109/MASSP.1984.1162257.

 [10] Strang, Gilbert (May–June 1994).
"Wavelets". American Scientist.82 (3):
250–255. JSTOR 29775194.

 [11] Kent, Ray D.; Read, Charles
(2002). Acoustic Analysis of
Speech.ISBN 0-7693-0112-6. ISBN 978-0-7693
-0112-9.

https://en.wikipedia.org/wiki/Bluestein%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Number-theoretic_transform
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm#cite_note-2
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Discrete_Hartley_transform
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm#cite_note-Frigo05-3
http://fftw.org/fftw-paper-ieee.pdf
http://fftw.org/fftw-paper-ieee.pdf
http://fftw.org/fftw-paper-ieee.pdf
https://en.wikipedia.org/wiki/Proceedings_of_the_IEEE
https://en.wikipedia.org/wiki/Proceedings_of_the_IEEE
https://en.wikipedia.org/wiki/Proceedings_of_the_IEEE
https://en.wikipedia.org/wiki/CiteSeerX
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.3097
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.3097
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.3097
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2Fjproc.2004.840301
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FMCISE.2000.814652
https://doi.org/10.1109%2FMCISE.2000.814652
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/1521-9615
https://en.wikipedia.org/wiki/Steven_G._Johnson
http://fftw.org/fftw-paper-ieee.pdf
http://fftw.org/fftw-paper-ieee.pdf
http://fftw.org/fftw-paper-ieee.pdf
http://fftw.org/fftw-paper-ieee.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.2307%2F2310304
https://en.wikipedia.org/wiki/JSTOR
https://en.wikipedia.org/wiki/JSTOR
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/2310304
https://ieeexplore.ieee.org/author/38198305400
https://ieeexplore.ieee.org/author/37329175300
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8956
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8956
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8956
https://doi.org/10.1109/SECON.2003.1268439
https://en.wikipedia.org/wiki/Charles_Sidney_Burrus
http://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
http://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
http://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
http://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FMASSP.1984.1162257
https://en.wikipedia.org/wiki/Gilbert_Strang
https://en.wikipedia.org/wiki/American_Scientist
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/29775194
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7693-0112-6
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7693-0112-9
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7693-0112-9

	INTRODUCTION
	REVIEW ON METHODS
	Divide and Conquer Method
	Redundant Complex Binary Number System

	REVIEW ON ALGORITHMS
	Cooley–Tukey Algorithm
	(i) Re-indexing
	(ii) DFT re-expression

	BRUUN'S ALGORITHM
	Karatsuba Multiplication

	CONCLUSION
	[8] H. Zaini, Florida Inst. of Technol., Melbourne, FL, USA, R.G. Deshmukh, Florida Inst. of Technol., Melbourne, FL, USA “Complex number representation in RCBNS form for arithmetic operations and conversion of the result into standard binary form”, I...

