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Abstract 
Multipliers are key components of many high 
performance systems such as FIR filters, 
microprocessor, digital signal processor, etc. 
The performance of the system is determined 
based on the performance of the multiplier. 
Complex number operations are playing a 
major role in many digital signal processing 
based applications. The overall performance 
of the multiplication is based on repeated 
addition and subtraction. There is the 
possibility to improve the performance of 
multiplier is only by concentrate on the 
factors of delay, adders, subtractions and 
thereby speed and accuracy will be increased. 
While involved in complex number 
multiplication  
Index Terms: RCBNS, Algorithms, FFT  
 

I. INTRODUCTION 
Most of the algorithms related to efficient 

multiplies are reviewed. Fast Fourier transforms 
are widely used for applications in engineering, 
science, and mathematics. The basic ideas were 
popularized in 1965, but some algorithms had 
been derived as early as 1805.  In 1994, Gilbert 
Strang [9] [10] [11] described the FFT as "the 
most important numerical algorithm of our 
lifetime", and it was included in Top 10 
Algorithms of 20th Century by the 
IEEE journal Computing in Science & 
Engineering [5]. 

The best-known FFT algorithms depend upon 
the factorization of N, but there are FFTs with 
O(N log N) complexity for all N, even 
for prime N. Many FFT algorithms only depend 

on the fact that  is an N-th primitive 
root of unity, and thus can be applied to 
analogous transforms over any finite field, such 
as number-theoretic transforms. Since the 
inverse DFT is the same as the DFT, but with the 
opposite sign in the exponent and a 1/N factor, 
any FFT algorithm can easily be adapted for it. 

FFT-related algorithms: Cooley–Tukey FFT 
algorithm, Prime-factor FFT algorithm, Bruun's 
FFT algorithm, Rader's FFT algorithm, 
Bluestein's FFT algorithm, Goertzel algorithm – 
Computes individual terms of discrete Fourier 
transform are may be permitted in complex 
multiplication which are discussed in the 
following. 

II. REVIEW ON METHODS 
A. Divide and Conquer Method 
The divide-and-conquer paradigm is often 

used to find the optimal solution of a problem. Its 
basic idea is to decompose a given problem into 
two or more similar, but simpler, sub problems, 
to solve them in turn, and to compose their 
solutions to solve the given problem. Problems 
of sufficient simplicity are solved directly. 
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Fig. 1. Basic Iterative Multiplier 
 

An important application of divide and 
conquer is in optimization, where if the search 
space is reduced by a constant factor at each step, 
the overall algorithm has the same asymptotic 
complexity as the pruning step, with the constant 
depending on the reduced factor.  

B. Redundant Complex Binary Number 
System 
A Redundant Complex Binary Number 

System (RCBNS) consists of both real and 
imaginary-radix number systems that form a 
redundant integer digit set. This system is 
formed by using complex radix of (-1+j) and a 
digit set of α = 3, where α assumes a value of -3, 
-2, -1, 0, 1, 2, 3. The arithmetic operations of 
complex numbers with this system treat the real 
and imaginary parts as one unit. The carry-free 
addition has the advantage of Redundancy in 
number representation in the arithmetic 
operations. 

Results of the arithmetic operations are in the 
RCBNS form. The two methods for conversion 
from the RCBNS form to the standard binary 
number form have been presented. In this paper 
the RCBNS reduces the number of steps required 
to perform complex number arithmetic 
operations, thus enhancing the speed. 

III. REVIEW ON ALGORITHMS 
A. Cooley–Tukey Algorithm 
The Cooley–Tukey algorithm, named after J. 

W. Cooley and John Tukey, is the most 
common fast Fourier transform (FFT) algorithm. 
It re-expresses the discrete Fourier 
transform (DFT) of an 
arbitrary composite size N = N1N2 in terms 

of N1 smaller DFTs of sizes N2, recursively, to 
reduce the computation time to O(N log N) for 
highly composite N (smooth numbers). Because 
of the algorithm's importance, specific variants 
and implementation styles have become known 
by their own names, as described below. 

Because of the Cooley–Tukey algorithm 
breaks the DFT into smaller DFTs, it can be 
combined arbitrarily with any other algorithm for 
the DFT. For 
example, Rader's or Bluestein's algorithm can be 
used to handle large prime factors that cannot be 
decomposed by Cooley–Tukey or 
the prime-factor algorithm can be exploited for 
greater efficiency in separating out relatively 
prime factors. 

The algorithm, along with its recursive 
application, was invented by Carl Friedrich 
Gauss. Cooley and Tukey independently 
rediscovered and popularized it 160 years later. 

A radix-2 decimation-in-time (DIT) FFT is the 
simplest and most common form of the 
Cooley–Tukey algorithm, although highly 
optimized Cooley–Tukey implementations 
typically use other forms of the algorithm as 
described below. Radix-2 DIT divides a DFT of 
size N into two interleaved DFTs (hence the 
name "radix-2") of size N/2 with each recursive 
stage. 

The discrete Fourier transform (DFT) is 
defined by the formula: 

 
The radix-2 DIT algorithm rearranges the DFT 
of the function xn into two parts: a sum over the 
even-numbered indices n=2m and a sum over 
the odd-numbered indices n=2m+1: 
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B. Prime-Factor Algorithm (PFA) 

The prime-factor algorithm (PFA), also called 
the Good–Thomas algorithm (1958/1963), is 
a fast Fourier transform (FFT) algorithm that 
re-expresses the discrete Fourier 
transform (DFT) of a size N = N1N2 as a 
two-dimensional N1×N2 DFT, but only for the 
case where N1 and N2 are relatively prime. 
These smaller transforms of size N1 and N2 can 
then be evaluated by applying 
PFA recursively or by using some other FFT 
algorithm. 

PFA should not be confused with 
the mixed-radix generalization of the 
popular Cooley–Tukey algorithm, which also 
subdivides a DFT of size N = N1N2 into smaller 
transforms of size N1 and N2. The latter 
algorithm can use any factors (not necessarily 
relatively prime), but it has the disadvantage that 
it also requires extra multiplications by roots of 
unity called twiddle factors, in addition to the 
smaller transforms. On the other hand, PFA has 
the disadvantages that it only works for relatively 
prime factors (e.g. it is useless 
for power-of-two sizes) and that it requires a 
more complicated re-indexing of the data based 
on the Chinese remainder theorem (CRT). 
However, that PFA can be combined with 
mixed-radix Cooley–Tukey, with the former 
factorizing N into relatively prime components 
and the latter handling repeated factors. 

Recall that the DFT is defined by the formula: 

 

The PFA involves a re-indexing of the input and 
output arrays, which when substituted into the 
DFT formula transforms it into two nested DFTs 
(a two-dimensional DFT). 

 

(i) Re-indexing 
Suppose that N = N1N2, where N1 and N2 are 

relatively prime. In this case, we can define 
a re-indexing of the input n and output k by: 

 

(ii) DFT re-expression 
The above re-indexing is then substituted into 

the formula for the DFT, and in particular into 
the product nk in the exponent. Because e2πi = 1, 
this exponent is evaluated modulo N: 
any N1N2 = N cross term in the nk product can 
be set to zero. (Similarly, Xk and xn are 
implicitly periodic in N, so their subscripts are 
evaluated modulo N.) The remaining terms give: 

 

The inner and outer sums are simply DFTs of 
size N2 and N1, respectively. 

(Here, N1
−1 N1 is unity when evaluated 

modulo N2 in the inner sum's exponent, and vice 
versa for the outer sum's exponent.) 

C. BRUUN'S ALGORITHM 
Bruun's algorithm is a fast Fourier 

transform (FFT) algorithm based on an unusual 
recursive polynomial-factorization approach, 
proposed for powers of two by G. Bruun in 1978 
and generalized to arbitrary even composite sizes 
by H. Murakami in 1996. Because its operations 
involve only real coefficients until the last 
computation stage, it was initially proposed as a 
way to efficiently compute the discrete Fourier 
transform (DFT) of real data. Bruun's algorithm 
has not seen widespread use, however, as 
approaches based on the ordinary Cooley–Tukey 
FFT algorithm have been successfully adapted to 
real data with at least as much efficiency. 
Furthermore, there is evidence that Bruun's 
algorithm may be intrinsically less accurate than 
Cooley–Tukey in the face of finite numerical 
precision (Storn, 1993). 
(i) Brunn factorization 

The basic Bruun algorithm for powers of 
two N=2n factorizes z2n-1 recursively via the 
rules: 
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where a is a real constant with 
 then 

 

 

 
D. Rader's Algorithm  

Rader's algorithm (1968), named for Charles 
M. Rader of MIT Lincoln Laboratory, is a fast 
Fourier transform (FFT) algorithm that 
computes the discrete Fourier transform (DFT) 
of prime sizes by re-expressing the DFT as a 
cyclic convolution (the other algorithm for FFTs 
of prime sizes, Bluestein's algorithm, also works 
by rewriting the DFT as a convolution). 

Since Rader's algorithm only depends upon the 
periodicity of the DFT kernel, it is directly 
applicable to any other transform (of prime 
order) with a similar property, such as 
a number-theoretic transform or the discrete 
Hartley transform. 

The algorithm can be modified to gain a factor of 
two savings for the case of DFTs of real data, 
using a slightly modified 
re-indexing/permutation to obtain two half-size 
cyclic convolutions of real data;[2] an alternative 
adaptation for DFTs of real data uses the discrete 
Hartley transform.[3] 

rewrite the DFT using these new 
indices p and q as: 
E. Bluestein's FFT algorithm 
Beginning with the DFT 

 

 

 

 

F. Goertzel Algorithm 
The Goertzel algorithm [7] is a technique 

in digital signal processing (DSP) that provides a 
means for efficient evaluation of individual 
terms of the discrete Fourier transform (DFT), 
thus making it useful in certain practical 
applications, such as recognition of DTMF tones 
produced by the buttons pushed on a telephone 
keypad. The algorithm was first described 
by Gerald Goertzel in 1958.[1] 

Like the DFT, the Goertzel algorithm analyses 
one selectable frequency component from 
a discrete signal.[2][3][4] Unlike direct DFT 
calculations, the Goertzel algorithm applies a 
single real-valued coefficient at each iteration, 
using real-valued arithmetic for real-valued input 
sequences. For covering a full spectrum, the 
Goertzel algorithm has a higher order of 
complexity than fast Fourier transform (FFT) 
algorithms, but for computing a small number of 
selected frequency components, it is more 
numerically efficient. The simple structure of the 
Goertzel algorithm makes it well suited to small 
processors and embedded applications, though 
not limited to these. 

(i) DFT computations 
For the important case of computing a DFT term, 
the following special restrictions are applied. 
The frequencies chosen for the Goertzel analysis 
are restricted to the special form 

 
The index number  indicating the "frequency 
bin" of the DFT is selected from the set of index 
numbers 
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Making these substitutions into equation (6) and 

observing that the term  

 

 
 
G. Gauss Algorithm 
 
Re + j Im = (W + j X) (Y + j Z)                                                                                      
                = (WY-XZ) + j (XY + WZ) 

 

Multiply W X 

Y WY jXY 

jZ jWZ -XZ 
 

 
As per Gauss’s algorithm  [1][2][3] for 

complex number multiplication gives two 
separate equations to calculate real and 
imaginary part of the final result. From eqn. the 
real part of the output can be given by (WY - 
XZ), and the imaginary part of the result can be 
computed using (XY + WZ). Thus four separate 
multiplications and are required to produce the 
real as well as imaginary part numbers. 

 
H. Complex Multiplication Algorithm 

This algorithm requires three multiplications 
and five additions or subtractions .In 1963, Peter 
Ungar suggested setting m to i to obtain a similar 
reduction in the complex multiplication 
algorithm. To multiply (a + b i) · (c + d i), follow 
these steps: 

1. Compute b · d, call the result F 

2. Compute a · c, call the result G 

3. Compute (a + b) · (c + d), call the 
result H 

4. The imaginary part of the result 
is K = H − F − G = a · d + b · c 

5. The real part of the result 
is G − F = a · c - b · d 

 

I. Karatsuba Multiplication 
The system which needs to multiply 

numbers in the range of several thousand digits, 
such as computer algebra 
systems and bignum libraries, long 
multiplication is too slow. These systems may 
employ Karatsuba multiplication, which was 
discovered in 1960 (published in 1962). The 
heart of Karatsuba's method lies in the 
observation that two-digit multiplication can be 
done with only three rather than the four 
multiplications classically required. This is an 
example of what is now called a divide and 
conquer algorithm. Suppose we want to multiply 
two 2-digit base-m numbers: x1 m + x2 and y1 m 
+ y2: 

1. Compute x1 · y1, call the result F 
2. Compute x2 · y2, call the result G 
3. Compute (x1 + x2) · (y1 + y2), call the 

result H 
4. Compute H − F − G, call the result K; 

this number is equal to x1 · y2 + x2 · y1 
5. Compute F · m2 + K · m + G. 

 
To compute these three products of m-digit 

numbers, we can employ the same trick again, 
effectively using recursion. Once the numbers 
are computed, we need to add them together 
(steps 4 and 5), which takes about n operations. 

 
Karatsuba multiplication has a time 

complexity of O(nlog
2

3) ≈ O(n1.585), making this 
method significantly faster than long 
multiplication. Because of the overhead of 
recursion, Karatsuba's multiplication is slower 
than long multiplication for small values of n; 
typical implementations therefore switch to long 
multiplication if n is below some threshold. 

Karatsuba's algorithm is the first known 
algorithm for multiplication that is 
asymptotically faster than long 
multiplication,[16] and can thus be viewed as the 
starting point for the theory of fast 
multiplications. 
J. Rader's Algorithm  
Rader's algorithm (1968),[1] named for Charles 
M. Rader of MIT Lincoln Laboratory, is a fast 
Fourier transform (FFT) algorithm that 
computes the discrete Fourier transform (DFT) 
of prime sizes by re-expressing the DFT as a 
cyclic convolution (the other algorithm for FFTs 

https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Bignum
https://en.wikipedia.org/wiki/Anatoly_Karatsuba
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Multiplication_algorithm#cite_note-16
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm#cite_note-1
https://en.wikipedia.org/wiki/MIT_Lincoln_Laboratory
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Convolution


                                                                                
   

  INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)              

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-5, 2019 

27 

 

of prime sizes, Bluestein's algorithm, also works 
by rewriting the DFT as a convolution). 

Since Rader's algorithm only depends upon the 
periodicity of the DFT kernel, it is directly 
applicable to any other transform (of prime 
order) with a similar property, such as 
a number-theoretic transform or the discrete 
Hartley transform. 

The algorithm can be modified to gain a factor of 
two savings for the case of DFTs of real data, 
using a slightly modified 
re-indexing/permutation to obtain two half-size 
cyclic convolutions of real data;[2] an alternative 
adaptation for DFTs of real data uses thediscrete 
Hartley transform.[3] 

rewrite the DFT using these new 

indices p and q as: 

IV. CONCLUSION 
In FFT, complex multiplication is play an 

important role. Hence, if suitable algorithm 
included then thereby the parameters like power, 
delay and area can be reduced in order to design a 
speed systems which can be applied in various 
applications like digital communication, DSP 
applications and wherever there is a need of 
complex multiplication. 
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