

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

49

DEVELOPMENT OF INTRUSION DETECTION SYSTEM FOR

MULTI-LAYERED WEB APPLICATIONS
Narendra Kumar,N.1 , Sai Sahit Nalluri.2

1 Assistant professor, Department of computer science, MVGR College of Engineering, India
2 Bachelors of computer science, GITAM University, Visakhapatnam, India

Abstract
Internet services and applications have become
an inextricable part of daily life, enabling
communication and the management of personal
information from anywhere. To accommodate
this increase in application and data complexity,
web services have moved to a multi-tiered design
wherein the web server runs the application
front-end logic and data is outsourced to a
database or file server.

In this paper, we present Double Guard, an

Intrusion detection(IDS) system that models the
network behavior of user sessions across both
the front-end web server and the back-end
database. By monitoring both web and
subsequent database requests, we are able to
ferret out attacks that independent IDS would
not be able to identify. Furthermore, we quantify
the limitations of any multi-tier IDS in terms of
training sessions and functionality coverage. We
implemented Double Guard using an Apache
web server with MySQL and lightweight
virtualization. We then collected and processed
real-world traffic over a 15-day period of system
deployment in both dynamic and static web
applications. Finally, using Double Guard, we
were able to expose a wide range of attacks with
100% accuracy while maintaining 0% false
positives for static web services and 0.6% false
positives for dynamic web services.
Index Terms: Multi-tier, MYSQL, Apache web
server

I. INTRODUCTION
Web-delivered services and applications have

increased in both popularity and complexity over
the past few years. Daily tasks, such as banking,
travel, and social networking, are all done via the
web. Such services typically employ a web server

front-end that runs the application user interface
logic, as well as a back-end server that consists of a
database or file server. Due to their ubiquitous use
for personal and/or corporate data, web services
have always been the target of attacks. These
attacks have recently become more diverse, as
attention has shifted from attacking the front-end to
exploiting vulnerabilities of the web applications in
order to corrupt the back-end database system (e.g.,
SQL injection attacks). A plethora of Intrusion
Detection Systems (IDS) currently examine
network packets individually within both the web
server and the database system. However, there is
very little work being performed on multi-tiered
Anomaly Detection (AD) systems that generate
models of network behavior for both web and
database network interactions.

In such multi-tiered architectures, the back-end

database server is often protected behind a firewall
while the web servers are remotely accessible over
the Internet. Unfortunately, though they are
protected from direct remote attacks, the back-end
systems are susceptible to attacks that use web
requests as a means to exploit the back-end.

To protect multi-tiered web services, Intrusion

detection systems (IDS) have been widely used to
detect known attacks

by matching misused traffic patterns or
signatures. A class of IDS that leverages machine
learning can also detect unknown attacks by
identifying abnormal network traffic that deviates
from the so-called “normal” behavior previously
profiled during the IDS training phase. Individually,
the web IDS and the database IDS can detect
abnormal network traffic sent to either of them.
However, we found that these IDS cannot detect

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

50

cases wherein normal traffic is used to attack the
web server and the database server. For example, if
an attacker with non-admin privileges can log in to
a web server using normal-user access credentials,
he/she can find a way to issue a privileged database
query by exploiting vulnerabilities in the web
server. Neither the web IDS nor the database IDS
would detect this type of attack since the web IDS
would merely see typical user login traffic and the
database IDS would see only the normal traffic of a
privileged user. This type of attack can be readily
detected if the database IDS can identify that a
privileged request from the web server is not
associated with user-privileged access.
Unfortunately, within the current multi-threaded
web server architecture, it is not feasible to detect
or profile such causal mapping between web server
traffic and DB server traffic since traffic cannot be
clearly attributed to user sessions.

In this paper, we present Double Guard, a system

used to detect attacks in multi-tiered web services.
Our approach can create normality models of
isolated user sessions that include both the web
front-end (HTTP) and back-end (File or SQL)
network transactions. To achieve this, we employ a

lightweight virtualization technique to assign each
user’s web session to a dedicated container, an
isolated virtual computing environment. We use the
container ID to accurately associate the web request
with the subsequent DB queries. Thus, Double
Guard can build a causal mapping profile by taking
both the web server and DB traffic into account.

We have implemented our Double Guard

container architecture using OpenVZ, and
performance testing shows that it has reasonable
performance overhead and is practical for most web
applications. When the request rate is moderate
(e.g., under 110 requests per second), there is
almost no overhead in comparison to an
unprotected vanilla system. Even in a worst case
scenario when the server was already overloaded,
we observed only 26% performance overhead. The
container-based web architecture not only fosters
the profiling of causal mapping, but it also provides
an isolation that prevents future session-hijacking
attacks. Within a lightweight virtualization
environment, we ran many copies of the web server
instances

in different containers so that each one was
isolated from the rest. As ephemeral containers can
be easily instantiated and destroyed, we assigned
each client session a dedicated container so that,
even when an attacker may be able to compromise a
single session, the damage is confined to the
compromised session; other user sessions remain
unaffected by it.

Using our prototype, we show that, for websites

that do not permit content modification from users,
there is a direct causal relationship between the
requests received by the front-end web server and
those generated for the database back-end. In fact,
we show that this causality-mapping model can be
generated accurately and without prior knowledge
of web application functionality. Our experimental
evaluation, using real-world network traffic
obtained from the web and database requests of a
large center, showed that we were able to extract
100% of functionality mapping by using as few as
35 sessions in the training phase. Of course, we also
showed that this depends on the size and
functionality of the web service or application.

However, it does not depend on content changes if
those changes can be performed through a
controlled environment and retrofitted into the
training model. We refer to such sites as “static”
because, though they do change over time, they do
so in a controlled fashion that allows the changes to
propagate to the sites’ normality models.

In addition to this static website case, there are

web services that permit persistent back-end data
modifications. These services, which we call
dynamic, allow HTTP requests to include
parameters that are variable and depend on user
input. Therefore, our ability to model the causal
relationship between the front-end and back-end is
not always deterministic and depends primarily
upon the application logic. For instance, we
observed that the back-end queries can vary based
on the value of the parameters passed in the HTTP
requests and the previous application state.
Sometimes, the same application’s primitive
functionality (i.e., accessing a table) can be
triggered by many different web pages. Therefore,
the resulting mapping between web and database

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

51

requests can range from one to many, depending on
the value of the parameters passed in the web
request.

To address this challenge while building a

mapping model for dynamic web pages, we first
generated an individual training model for the basic
operations provided by the web services. We
demonstrate that this approach works well in
practice by using traffic from a live blog where we
progressively modeled nine operations. Our results
show that we were able to identify all attacks,
covering more than 99% of the normal traffic as the
training model is refined.

Modeling for Static Websites

In the case of a static website, the non-

deterministic map-ping does not exist as there are
no available input variables or states for static
content. We can easily classify the traffic collected
by sensors into three patterns in order to build the
mapping model. As the traffic is already separated
by session, we begin by iterating all of the sessions
from 1 to N. For each rm 2 REQ, we maintain a set
ARm to record the IDs of sessions in which rm
appears. The same holds for the database queries;
we have a set AQs for each qs 2 SQL to record all
the session IDs. To produce the training model, we
leverage the fact that the same mapping pattern
appears many times across different sessions. For
each ARm, we search for the AQs that equals the
ARm. When ARm = AQs, this indicates that every
time rm appears in a session then qs will also
appear in the same session, and vice versa.

Fig 1: Deterministic Mapping Using Session ID of
the Container (VE).

Given enough samples, we can confidently

extract a map-ping pattern rm ! qs. Here, we use a
threshold value t so that if the mapping appears in
more than t sessions (e.g., the cardinality of ARm
or AQs is greater than t), then a mapping pattern
has been found. If such a pattern appears less than t
times, this indicates that the number of training
sessions is insufficient. In such a case, scheduling
more training sessions is recommended before the
model is built, but these patterns can also be
ignored since they may be incorrect mappings. In
our experiments, we set t to 3, and the results
demonstrate that the requirement was easily
satisfied for a static website with a relatively low
number of training sessions. After we confirm all
deterministic mappings, we remove these matched
requests and queries from REQ and SQL
respectively. Since multiple requests are often sent
to the web server within a short period of time by a
single user operation, they can be mapped together
to the same AQs. Some web requests that could
appear separately are still present as a unit. For
example, the read request always precedes the post
request on the same web page. During the training
phase, we treat them as a single instance of web
requests bundled together unless we observe a case
when either of them appears separately.

Our next step is to decide the other two mapping

patterns by assembling a white list for static file
requests, including JPG, GIF, CSS, etc. HTTP
requests for static files are placed in the EQS set.
The remaining requests are placed in REQ; if we
cannot find any matched queries for them, they will
also be placed in the EQS set. In addition, all
remaining queries in SQL will be considered as No
Matched Request cases and placed into N M R.

Figure 1 illustrates the use of the session ID

provided by the container (VE) in order to build the
deterministic mapping between http requests and
the database requests. The request rA has the set
ARA of f2, 4, 5g, which equals to AQY . Therefore,
we can decide a Deterministic Mapping rA ! qY .

We developed an algorithm that takes the input of

training dataset and builds the mapping model for
static websites. For each unique HTTP request and
database query, the algorithm assigns a hash table
entry, the key of the entry is the request or query
itself, and the value of the hash entry is AR for the

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

52

request or AQ for the query respectively. The
algorithm generates the mapping model by
considering all three mapping patterns that would
happen in static websites. The algorithm below
describes the training process.

Table 1: Static Model Building Algorithm

Testing for Static Websites
Once the normality model is generated, it can be

employed for training and detection of abnormal
behavior. During the testing phase, each session is
compared to the normality model. We begin with
each distinct web request in the session and, since
each request will have only one mapping rule in the
model, we simply compare the request with that
rule. The testing phase algorithm is as follows:

If the rule for the request is Deterministic

Mapping r ! Q (Q 6= ;), we test whether Q is a
subset of a query set of the session. If so, this
request is valid, and we mark the queries in Q.
Otherwise, a violation is detected and considered to
be abnormal, and the session will be marked as
suspicious.

If the rule is Empty Query Set r ! ;, then the

request is not considered to be abnormal, and we do
not mark any database queries. No intrusion will be
reported.

For the remaining unmarked database queries, we

check to see if they are in the set N M R. If so, we
mark the query as such.

Any untested web request or unmarked database

query is considered to be abnormal. If either exists
within a session, then that session will be marked as
suspicious.

In our implementation and experimenting of the

static test-ing website, the mapping model
contained the Deterministic Mappings and Empty
Query Set patterns without the No Matched Request
pattern. This is commonly the case for static
websites. As expected, this is also demonstrated in
our experiments in section V.

Modeling of Dynamic Patterns

In contrast to static web pages, dynamic web
pages allow users to generate the same web query
with different param-eters. Additionally, dynamic
pages often use POST rather than GET methods to
commit user inputs. Based on the web server’s
application logic, different inputs would cause
different database queries. For example, to post a
comment to a blog article, the web server would
first query the database to see the existing
comments. If the user’s comment differs from
previous comments, then the web server would
automatically generate a set of new queries to insert
the new post into the back-end database. Otherwise,
the web server would reject the input in order to
prevent duplicated comments from being posted
(i.e., no corresponding SQL query would be
issued.) In such cases, even assigning the same
parameter values would cause different set of
queries, depending on the previous state of the
website. Likewise, this non-deterministic mapping
case (i.e., one-to-many mapping) happens even
after we normalize all parameter values to extract
the structures of the web requests and queries. Since
the mapping can appear differently in different
cases, it becomes difficult to identify all of the one-
to-many mapping patterns for each web request.
Moreover, when different operations occasionally
overlap at their possible query set, it becomes even
harder for us to extract the one-to-many mapping
for each operation by comparing matched requests
and queries across the sessions.

Since the algorithm for extracting mapping

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

53

patterns in static pages no longer worked for the
dynamic pages, we created another training method
to build the model. First, we tried to categorize all
of the potential single (atomic) operations on the
web pages. For instance, the common possible
operations for users on a blog website may include
reading an article, posting a new article, leaving a
comment, visiting the next page, etc. All of the
operations that appear within one session are
permutations of these operations. If we could build
a mapping model for each of these basic operations,
then we could compare web requests to determine
the basic operations of the session and obtain the
most likely set of queries mapped from these
operations. If these single operation models could
not cover all of the requests and queries in a
session, then this would indicate a possible
intrusion.

Interestingly, our blog website built for testing

purposes shows that, by only modeling nine basic
operations, it can cover most of the operations that
appeared in the real captured traffic. For each
operation (e.g., reading an article), we build the
model as follows. In one session, we perform only a
single read operation, and then we obtain the set of
triggered database queries. Since we cannot ensure
that each user perform only a single operation
within each session in real traffic, we use a tool
called Selenium [15] to separately generate training
traffic for each operation. In each session, the tool
performs only one basic operation. When we repeat
the operation multiple times using the tool, we can
easily substitute the different parameter values that
we want to test (in this case, reading different
articles). Finally, we obtain many sets of queries
from one session and assemble them to obtain the
set of all possible queries resulting from this single
operation.

By placing each rm, or the set of related requests

Rm, in different sessions with many different
possible inputs, we obtain as many candidate query
sets fQn, Qp, Qq ...g as possible. We then establish
one operation mapping model Rm ! Qm (Qm = Qn
[Qp [Qq [:::), wherein Rm is the set of the web
requests for that single operation and Qm includes
the possible queries triggered by that operation.
Notice that this mapping model includes both
deterministic and non-deterministic mappings and

the set EQS is still used to hold static file requests.
As we are unable to enumerate all the possible
inputs of a single operation (particularly write type
operations), the model may incur false positives.

Detection for Dynamic Websites
Once we build the separate single operation

models, they can be used to detect abnormal
sessions. In the testing phase, traffic captured in
each session is compared with the model. We also
iterate each distinct web request in the session. For
each request, we determine all of the operation
models that this request belongs to, since one
request may now appear in several models. We then
take the entire corresponding query sets in these
models to form the set CQS. For the testing session
i, the set of DB queries Qi should be a subset of the
CQS. Otherwise, we would find some unmatched
queries. For the web requests in Ri, each should
either match at least one request in the operation
model or be in the set EQS. If any unmatched web
request remains, this indicates that the session has
violated the mapping model.

For example, consider the model of two single

operations such as Reading an article and Writing
an Article. The mapping models are READ! RQ
and WRITE! WQ, and we use them to test a given
session i. For all the requests in the session, we then
find that each of them either belongs to request set
READ or W RIT E. (You can ignore set EQS here).
This means that there are only two basic operations
in the session, though they may appear as any of
their permutations. Therefore, the query set Qi
should be a subset of RQ [W Q, which is CQS.
Otherwise, queries exist in this session that does not
belong to either of the operations, which is
inconsistent with the web requests and indicates a
possible intrusion. Similarly, if there are web
requests in the session that belong to none of the
operation models, then it either means that our
models haven’t covered this type of operation or
that this is an abnormal web request. According to
our algorithm, we will identify such sessions as
suspicious so that we may have false positives in
our detections. We discuss the false positive
detection rate further in Section V.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

54

Fig 2: The overall architecture of our prototype

PERFORMANCE EVALUATION
We implemented a prototype of Double Guard

using a web server with a back-end DB. We also set
up two testing websites, one static and the other
dynamic. To evaluate the detection results for our
system, we analyzed four classes of attacks, as
discussed in Section III, and measured the false
positive rate for each of the two websites.

A. Implementation
In our prototype, we chose to assign each user

session into a different container; however this was
a design decision. For instance, we can assign a
new container per each new IP address of the client.
In our implementation, containers were recycled
based on events or when sessions time out. We
were able to use the same session tracking
mechanisms as implemented by the Apache server
(cookies, mod user track, etc) because lightweight
virtualization containers do not im-pose high
memory and storage overhead. Thus, we could
maintain a large number of parallel-running Apache
instances similar to the Apache threads that the
server would maintain in the scenario without
containers. If a session timed out, the Apache
instance was terminated along with its container. In
our prototype implementation, we used a 60-minute
timeout due to resource constraints of our test
server. However, this was not a limitation and could
be removed for a production environment where
long-running processes are required. Fig-ure 9
depicts the architecture and session assignment of
our prototype, where the host web server works as a
dispatcher.

Initially, we deployed a static testing website

using the Joomla Content Management System. In
this static web-site, updates can only be made via
the back-end management interface. This was
deployed as part of our center website in production
environment and served 52 unique web pages. For
our analysis, we collected real traffic to this website
for more than two weeks and obtained 1172 user
sessions.

To test our system in a dynamic website scenario,

we set up a dynamic Blog using the Word press
blogging software. In our deployment, site visitors
were allowed to read, post, and comment on
articles. All models for the received front-end and
back-end traffic were generated using this data.

Fig 3: Performance evaluation using http load.

The overhead is between 10.3% to 26.2%

We discuss performance overhead, which is

common for both static and dynamic models, in the
following section. In our analysis, we did not take
into consideration the potential for caching
expensive requests to further reduce the end-to-end
latency; this we left for future study.

B. Container Overhead
One of the primary concerns for a security system

is its performance overhead in terms of latency. In
our case, even though the containers can start
within seconds, generating a container on-the-fly to
serve a new session will increase the response time
heavily. To alleviate this, we created a pool of web
server containers for the forthcoming sessions akin
to what Apache does with its threads. As sessions
continued to grow, our system dynamically
instantiated new containers. Upon completion of a
session, we recycled these containers by reverting
them to their initial clean states.

The overhead of the server with container

architecture was measured using a machine with the
following specifications: 4 cores 2.8GHz CPU,

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

55

8GB memory, 100MB/s NIC card, and CentOS 5.3
as the server OS. Our container template used
Ubuntu 8.0.4 with Apache 2.2.8, and PHP 5.2.4.
The size of the template was about 160MB, and
Mysql was configured to run on the host machine.
Our experiment showed that it takes only a few
seconds for a container to start up, and our server
can run up to 250 web server instances to form the
pool of containers. Beyond this point, we observed
a dramatic performance downgrade of the web
server instances.

We evaluated the overhead of our container-

based server against a vanilla web server. In order
to measure throughput and response time, we used
two web server benchmark tools: http load and auto
bench. The testing website was the dynamic blog
website, and both vanilla web server and the
container-based web server connected to the same
MySQL database server on the host machine. For
the container-based server, we maintained a pool of
160 web server instances on the machine.

For the http load evaluation, we used the rate of 5

(i.e., it emulated 5 concurrent users). We tested
under the parameters of 100, 200, and 400 total
fetches, as well as 3 and 10 seconds of fetches. For
example, in the 100-fetches bench-mark, http load
fetches the URLs as fast as it can 100 times.

Fig 4: Performance evaluation using auto bench.

Similarly, in the 10 seconds benchmark, http load

fetches the URLs as fast as it can during the last 10
seconds. We picked 15 major URLs of the website
and tested them against both servers. Figure 3
shows our experiment results.

The value of fetches per second in the http load
results is the most important indicator to reflect web
server throughput performance. From the figure, we
can observe that the over-head varied from 10.3%
to 26.2%, under the full working load. When we put
the parameters at 3 and 10 seconds, the overhead
was about 23%.

We also tested using auto bench, which is a Perl

script wrapper around httperf. It can automatically
compare the performance of two websites. We
tested demanding rate ranging from 10 to 190,
which means that a series of tests started at 10
requests per second and increased by 20 requests
per second until 190 requests per second were being
requested; any responses that took longer than 10
seconds to arrive were counted as errors. We
compared the actual requests rates and the replay
rates for both servers.

Figure 4 shows that when the rate was less than

110 concurrent sessions per second, both servers
could handle re-quests fairly well. Beyond that
point, the rates in the container-based server
showed a drop: for 150 sessions per second, the
maximum overhead reflected in the reply rate was
around 21% (rate of 130). Notice that 21% was the
worst case scenario for this experiment, which is
fairly similar to 26.2% in the http load experiment.
When the server was not overloaded, and for our
server this was represented by a rate of less than
110 concurrent sessions per second, the
performance overhead was negligible.

Figure 5 depicts the time needed for starting a

container. As we opened 50 containers in a row, the
average time was about 4.2 seconds.

C. Static website model in training phase
For the static website, we used the algorithm in

Section IV-B to build the mapping model, and we
found that only the Deterministic Mapping and the
Empty Query Set Mapping patterns appear in the
training sessions. We expected that the No Matched
Request pattern would appear if the web application
had a cron job that contacts back-end database

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

56

Fig 5: Time for starting a new container

Fig 6: False Positives vs Training Time in Static

Website.

Server; however, our testing website did not have
such a cron job. We first collected 338 real user
sessions for a training dataset before making the
website public so that there was no attack during
the training phase.

We used part of the sessions to train the model

and all the remaining sessions to test it. For each
number on the x-axis of Figure 6, we randomly
picked the number of sessions from the overall
training sessions to build the model using the
algorithm, and we used the built model to test the
remaining sessions. We repeated each number 20
times and obtained the average false positive rate
(since there was no attack in the training dataset).
Figure 6 shows the training process. As the number
of sessions used to build the model increased, the
false positive rate decreased (i.e., the model became
more accurate). From the same figure, we can
observe that after taking 35 sessions, the false
positive rate decreased and stayed at 0. This implies
that for our testing static website, 35 sessions for

training would be sufficient to correctly build the
entire model. Based on this training process
accuracy graph, we can determine a proper time to
stop the training.

D. Dynamic modeling detection rates
We also conducted model building experiments

for the dynamic blog website. We obtained 329 real
user traffic sessions from the blog under daily
workloads. During this 7-day phase, we made our
website available only to internal users to ensure
that no attacks would occur. We then generated 20
attack traffic sessions mixed with these legitimate
sessions, and the mixed traffic was used for
detection.

The model building for a dynamic website is

different from that for a static one. We first
manually listed 9 common operations of the
website, which are presented in Table I. To build a
model for each operation, we used the automatic
tool Selenium to generate traffic. In each session,
we put only a single operation, which we iterated
50 times with different values in the parameters.
Finally, as described in Section IV-D, we obtained
separate models for each single operation. We then
took the built models and tested them against all
349 user sessions to evaluate the detection
performance. Figure 7 shows the ROC curves for
the testing results. We built our models with
different numbers of operations, and each point on
the curves indicates a different Threshold value.
The threshold value is defined as the number of
HTTP requests or SQL queries in a session that are
not matched with the normality model. We varied
the threshold value from 0 to 30 during the
detection. As the ROC curves depict, we could
always achieve a 100% True Positive Rate when
doing strict detection (threshold of 0) against
attacks in our threat model. With a more accurate
model, we can reach 100% sensitivity with a lower
False Positive rate. The nature of False Positives
comes from the fact that our manually extracted
basic operations are not sufficient to cover all
legitimate user behaviors. In figure 14, if we model
9 basic operations, we can reach 100% Sensitivity
with 6% False Positive rate. In the case of 23 basic
operations, we achieve the False Positive rate of
0.6%. This is part of the learning process illustrated
in this paper, by extending the learning step to

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

57

include more operations we can create a more
robust model and further reduce the false positives.

E. Attack Detection
Once the model is built, it can be used to detect

malicious sessions. For our static website testing,
we used the production website, which has regular
visits of around 50-100 sessions per day. We
collected regular traffic for this production site,
which totaled 1172 sessions.

For the testing phase, we used the attack tools

listed in Table II to manually launch attacks against
the testing website, and we mixed these attack
sessions with the normal traffic obtained during the
training phase. We used the sqlmap, which is an
automatic tool that can generate SQL injection
attacks. Nikto, a web server scanner tool that
performs

Fig 7: ROC curves for dynamic models.

Comprehensive tests and Metasploit were used to
generate a number of web server-aimed http attacks
(i.e., a hijack future session attack). We performed
the same attacks on both Double Guard and a
classic 3-tier architecture with a network IDS at the
web server side and a database IDS at the database
side. As there is no popular anomaly-based open
source network IDS available, we used Snort as the
network IDS in front of the web server, and we
used GreenSQL as the database IDS. For Snort
IDS, we downloaded and enabled all of the default
rules from its official website. We put GreenSQL
into database firewall mode so that it would
automatically whitelist all queries during the

learning mode and block all unknown queries
during the detection mode. Table II shows the
experiment results where Double Guard was able to
detect most of the attacks and there were 0 false
positives in our static website testing.

Furthermore, we performed the same test for the
dynamic blog website. In addition to the real traffic
data that we captured for plotting the ROC curves,
we also generated 1000 artificial traffic sessions
using Selenium and mixed the attack sessions
together with all of them. As expected, the models
for the dynamic website could also identify all of
the same attack sessions as the static case. In the
following section, we will discuss the experiment
results in Table II in more detail based on these four
attack scenarios in Section III-C.

Privilege Escalation Attack: For Privilege

Escalation Attacks, according to our previous
discussion, the attacker visits the website as a
normal user aiming to compromise the web server
process or exploit vulnerabilities to bypass
authentication. At that point, the attacker issues a
set of privileged (e.g., admin-level) DB queries to
retrieve sensitive information. We log and process
both legitimate web requests and database queries
in the session traffic, but there are no mappings
among them. IDSs working at either end can hardly
detect this attack since the traffic they capture
appears to be legitimate. However, Double Guard
separates the traffic by sessions. If it is a user
session, then the requests and queries should all
belong to normal users and match structurally.
Using the mapping model that we created during
the training phase, Double Guard can capture the
unmatched cases.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

58

Word Press 2.3.1 had known privilege escalation
vulnerability. As described in, there was a
vulnerable check “if (strpos($ SERVER[‘PHP
SELF’], ‘wp-admin/’) !== false) $this->is admin =
true;” that used the PHP str-pos() function to check
whether the $ SERVER[‘PHP SELF’] global
variable contained the string “wp-admin/”. If the
strpos() function found the “wp-admin/” string
within the

SERVER[‘PHP SELF’] variable, it would return

TRUE, which would result in the setting of the “is
admin” value to true. This ultimately granted the
user administrative rights to certain portions of the
web application. The vulnerable code was corrected
to “if (is admin ()) $this->is admin = true;” in a
later version, which added a function to determine
whether the user has administrative privilege. With
the vulnerable code, an unauthorized user could
input a forged URL like
“http://www.myblog.com/index.php/wp-admin/” so
as to set the value of variable $this->is admin to
TRUE. This would allow the unauthorized user to
access future, draft, or pending posts that are
administrator-level information.

According to our experimental results, Double

Guard is able to identify this class of attacks
because the captured administrative queries do not
match any captured HTTP re-quest. In addition, the
crafted URLs also violate the mapping model of
Double Guard, triggering an alert. In contrast, Snort
fails to generate any alert upon this type of attack,
as does GreenSQL. There are other privilege
escalation vulnerabilities, such as the ones listed in
NVD, which prevent both a network IDS like Snort
or a database IDS from detecting attacks against
these vulnerabilities. However, by looking at the
mapping relationship between web requests and
database queries, Double Guard is effective at
capturing such attacks.

Fig 8: A trained mapping from web request to

database queries

Hijack Future Session Attack (Web Server aimed

attack): Out of the four classes of attacks we
discuss, session hijacking is the most common, as
there are many examples that exploit the
vulnerabilities of Apache, IIS, PHP, ASP, and cgi,
to name a few. Most of these attacks manipulate the
HTTP requests to take over the web server. We first
ran Nikto. As shown in our results, both Snort and
Double Guard detected the malicious attempts from
Nikto. As a second tool, we used Metasploit loaded
with various HTTP based exploits. This time, Snort
missed most of these attack attempts, which
indicates that Snort rules do not have such
signatures. However, Double-Guard was able to
detect these attack sessions. Here, we point out that
most of these attacks are unsuccessful, and Double-
Guard captured these attacks mainly because of the
abnormal HTTP requests. Double Guard can
generate two classes of alerts. One class of alerts is
generated by sessions whose traffic does not match
the mapping model with abnormal database queries.
The second class of alerts is triggered by sessions
whose traffic violates the mapping model but only
in regards to abnormal HTTP requests; there is no
resulting database query. Most unsuccessful attacks,
including 404 errors with no resulting database
query, will trigger the second type of alerts. When
the number of alerts becomes overwhelming, users
can choose to filter the second type of alerts
because it does not have any impact on the back-
end database. Last, GreenSQL cannot detect these
attacks.

Double Guard is not designed to detect attacks

that exploit vulnerabilities of the input validation of
HTTP requests. We argue that, if there is no DB
query, this class of attacks cannot harm other
sessions through the web server layer because of
the isolation provided by the containers. However,
as we pointed out in Section III-D, XSS cannot be
detected nor mitigated by Double Guard since the
session hijacking does not take place at the isolated
web server layer.

Injection Attack: Here we describe how our

approach can detect the SQL injection attacks. To
illustrate with an ex-ample, we wrote a simple PHP
login page that was vulnerable to SQL injection
attack. As we used a legitimate username and
password to successfully log in, we could include
the HTTP request in the second line of Figure 8.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

59

We normalized the value of ‘admin’ and
‘123456’, and repeated the legitimate login process
a few times during the training phase. The mapping
model that was generated is shown in Figure 8 (S
stands for a string value), where the generalized
HTTP request structure maps to the following SQL
queries. After the training phase, we launched an
SQL injection attack that is shown in Figure 9. Note
that the attacker was not required to know the user
name and password because he/she could use an
arbitrary username the password 1’ or ’1=1, which
would be evaluated as true.

The HTTP request from the SQL injection

attacker would look like the second line in Figure 9.
The parameter shown

Fig 9: The resulting queries of SQL injection

attack

in the box is the injected content. After

normalizing all of the values in this HTTP request,
we had the same HTTP request as the one in Figure
8. However, the database queries we received in
Figure 9 (shown in box) do not match the
deterministic mapping we obtained during our
training phase.

In another experiment, we used sqlmap to attack

the websites. This tool tried out all possible SQL
injection combinations as a URL and generated
numerous abnormal queries that were detected by
DoubleGuard. GreenSQL was also effective at
detecting these attacks, which shows its ability to
detect SQL injection attacks. Regarding Snort,
although it is possible to write user-defined rules to
detect SQL injec-tion attack attempts, our
experiments did not result in Snort reporting any
SQL injection alerts.

SQL injection attacks can be mitigated by input

valida-tion. However, SQL injection can still be
successful because attackers usually exploit the

vulnerability of incorrect input validation
implementation, often caused by inexperienced or
careless programmers or imprecise input model
definitions. We establish the mappings between
HTTP requests and database queries, clearly
defining which requests should trigger which
queries. For an SQL injection attack to be
successful, it must change the structure (or the
semantics) of the query, which our approach can
readily detect.

Direct DB attack: If any attacker launches this

type of attack, it will easily be identified by our
approach. First of all, according to our mapping
model, DB queries will not have any matching web
requests during this type of attack. On the other
hand, as this traffic will not go through any
containers, it will be captured as it appears to differ
from the legitimate traffic that goes through the
containers. In our experiments, we generated
queries and sent them to the databases without
using the web server containers. Double Guard
readily captured these queries. Snort and GreenSQL
did not report alerts for this attack.

VI. CONCLUSION
We presented an intrusion detection system that

builds models of normal behavior for multi-tiered
web applications from both front-end web (HTTP)
requests and back-end database (SQL) queries.
Unlike previous approaches that correlated or
summarized alerts generated by independent IDSes,
Double Guard forms container-based IDS with
multiple input streams to produce alerts. Such
correlation of different data streams provides a
better characterization of the system for anomaly
detection because the intrusion sensor has a more
precise normality model that detects a wider range
of threats. We achieved this by isolating the flow of
information from each web server session with a
lightweight virtualization. Furthermore, we
quantified the detection accuracy of our approach
when we attempted to model static and dynamic
web requests with the back-end file system and
database queries. For static websites, we built a
well-correlated model, which our experiments
proved to be effective at detecting different types of
attacks. Moreover, we showed that this held true for
dynamic requests where both retrieval of
information and updates to the back-end database

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

60

occur using the web-server front end. When we
deployed our prototype on a system that employed
Apache web server, a blog application and a
MySQL back-end, DoubleGuard was able to
identify a wide range of attacks with minimal false
positives. As expected, the number of false
positives depended on the size and coverage of the
training sessions we used. Finally, for dynamic web
applications, we reduced the false positives to
0.6%.

ACKNOWLEDGEMENTS

We thank all the faculty members of computer
science department – MVGR College of
Engineering for their constant invaluable support.
Our special thanks to GITAM University without
which this project would not be possible. We
dedicate this to our family members for personal
reinforcement and encouragement in the times of
needfulness.

REFERENCES

[1] http://www.sans.org/top-cyber-security-risks/.
[2] http://web.nvd.nist.gov/view/vuln/detail?vulnId

=CVE-2010-4332.
[3] http://web.nvd.nist.gov/view/vuln/detail?vulnId

=CVE-2010-4333.
[4] autobench.

http://www.xenoclast.org/autobench/.
[5] Common vulnerabilities and exposures.

http://www.cve.mitre.org/.
[6] Five common web application vulnerabilities.

http://www.symantec.
com/connect/articles/five-common-web-
application-vulnerabilities.

[7] greensql. http://www.greensql.net/.
[8] httperf.

http://www.hpl.hp.com/research/linux/httperf/.
[9] http load. http://www.acme.com/software/http

load/.
[10] Joomla cms. http://www.joomla.org/.
[11] Linux-vserver. http://linux-vserver.org/.
[12] metasploit. http://www.metasploit.com/.
[13] nikto. http://cirt.net/nikto2.
[14] Openvz. http://wiki.openvz.org.
[15] Seleniumhq. http://seleniumhq.org/.
[16] sqlmap. http://sqlmap.sourceforge.net/.
[17] Virtuozzo containers.

http://www.parallels.com/products/pvc45/.
[18] Wordpress. http://www.wordpress.org/.
[19] Wordpress bug.

http://core.trac.wordpress.org/ticket/5487.

[20] C. Anley. Advanced sql injection in sql server
applications. Technical report, Next Generation
Security Software, Ltd, 2002.

[21] K. Bai, H. Wang, and P. Liu. Towards database
firewalls. In DBSec 2005.

[22] B. I. A. Barry and H. A. Chan. Syntax, and
semantics-based signature database for hybrid
intrusion detection systems. Security and
Commu-nication Networks, 2(6), 2009.

[23] D. Bates, A. Barth, and C. Jackson. Regular
expressions considered harmful in client-side
xss filters. In Proceedings of the 19th
international conference on World wide web,
2010.

[24] M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns.

[25] M. Cova, D. Balzarotti, V. Felmetsger, and G.
Vigna. Swaddler: An Approach for the
Anomaly-based Detection of State Violations in
Web Applications. In RAID 2007.

[26] H. Debar, M. Dacier, and A. Wespi. Towards a

taxonomy of intrusion-detection systems.
Computer Networks, 31(8), 1999.

[27] V. Felmetsger, L. Cavedon, C. Kruegel, and G.
Vigna. Toward Au-tomated Detection of Logic
Vulnerabilities in Web Applications. In
Proceedings of the USENIX Security
Symposium, 2010.

[28] Y. Hu and B. Panda. A data mining approach
for database intrusion detection. In H. Haddad,
A. Omicini, R. L. Wainwright, and L. M.
Liebrock, editors, SAC. ACM, 2004.

[29] Y. Huang, A. Stavrou, A. K. Ghosh, and S.
Jajodia. Efficiently tracking application
interactions using lightweight virtualization. In
Proceedings of the 1st ACM workshop on
Virtual machine security, 2008.

[30] H.-A. Kim and B. Karp. Autograph: Toward
automated, distributed worm signature
detection. In USENIX Security Symposium,
2004.

[31] C. Kruegel and G. Vigna. Anomaly detection of
web-based attacks. In Proceedings of the 10th
ACM Conference on Computer and Communi-
cation Security (CCS ’03), Washington, DC,
Oct. 2003. ACM Press.

[32] Lee, Low, and Wong. Learning fingerprints for
a database intrusion detection system. In
ESORICS: European Symposium on Research
in Computer Security. LNCS, Springer-Verlag,
2002.

http://www.sans.org/top-cyber-security-risks/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-4332
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-4332
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-4333
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-4333
http://www.xenoclast.org/autobench/
http://www.symantec.com/connect/articles/five-common-web-application-vulnerabilities
http://www.symantec.com/connect/articles/five-common-web-application-vulnerabilities
http://www.symantec.com/connect/articles/five-common-web-application-vulnerabilities
http://www.greensql.net/
http://www.hpl.hp.com/research/linux/httperf/
http://www.acme.com/software/http_load/
http://www.acme.com/software/http_load/
http://www.acme.com/software/http_load/
http://www.joomla.org/
http://linux-vserver.org/
http://www.metasploit.com/
http://cirt.net/nikto2
http://wiki.openvz.org/
http://seleniumhq.org/
http://sqlmap.sourceforge.net/
http://www.parallels.com/products/pvc45/
http://www.wordpress.org/
http://core.trac.wordpress.org/ticket/5487

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019

61

[33] Liang and Sekar. Fast and automated
generation of attack signatures: A basis for
building self-protecting servers. In SIGSAC:
12th ACM Conference on Computer and
Communications Security, 2005.

[34] J. Newsome, B. Karp, and D. X. Song.
Polygraph: Automatically generating signatures
for polymorphic worms. In IEEE Symposium
on Security and Privacy. IEEE Computer
Society, 2005.

[35] B. Parno, J. M. McCune, D. Wendlandt, D. G.
Andersen, and A. Perrig. CLAMP: Practical
prevention of large-scale data leaks. In IEEE
Symposium on Security and Privacy. IEEE
Computer Society, 2009.

[36] T. Pietraszek and C. V. Berghe. Defending
against injection attacks through context-
sensitive string evaluation. In RAID 2005.

[37] S. Potter and J. Nieh. Apiary: Easy-to-use
desktop application fault containment on
commodity operating systems. In USENIX
2010 Annual Technical Conference on Annual
Technical Conference.

[38] W. Robertson, F. Maggi, C. Kruegel, and G.
Vigna. Effective Anomaly Detection with
Scarce Training Data. In Proceedings of the
Network and Distributed System Security
Symposium (NDSS), 2010.

[39] M. Roesch. Snort, intrusion detection system.
http://www.snort.org.

[40] A. Schulman. Top 10 database attacks.
http://www.bcs.org/server.php?
show=ConWebDoc.8852.

[41] R. Sekar. An efficient black-box technique for
defeating web application attacks. In NDSS.
The Internet Society, 2009.

[42] A. Seleznyov and S. Puuronen. Anomaly
intrusion detection systems: Handling temporal
relations between events. In RAID 1999.

[43] Y. Shin, L. Williams, and T. Xie. SQLUnitgen:
Test case generation for SQL injection
detection. Technical report, Department of
Computer Science, North Carolina State
University, 2006.

[44] A. Srivastava, S. Sural, and A. K. Majumdar.
Database intrusion detection using weighted
sequence mining. JCP, 1(4), 2006.

[45] A. Stavrou, G. Cretu-Ciocarlie, M. Locasto,
and S. Stolfo. Keep your friends close: the
necessity for updating an anomaly sensor with
legitimate environment changes. In Proceedings
of the 2nd ACM Workshop on Security and
Artificial Intelligence, 2009.

[46] G. E. Suh, J. W. Lee, D. Zhang, and S.
Devadas. Secure program execution via
dynamic information flow tracking. ACM
SIGPLAN Notices, 39(11), Nov. 2004.

[47] F. Valeur, G. Vigna, C. Krugel,¨ and R. A.
Kemmerer. A comprehensive approach to
intrusion detection alert correlation. IEEE
Trans. Depend-able Sec. Comput, 1(3), 2004.

[48] T. Verwoerd and R. Hunt. Intrusion detection
techniques and approaches. Computer
Communications, 25(15), 2002.

[49] G. Vigna, W. K. Robertson, V. Kher, and R. A.
Kemmerer. A stateful intrusion detection
system for world-wide web servers. In ACSAC
2003. IEEE Computer Society.

[50] G. Vigna, F. Valeur, D. Balzarotti, W. K.
Robertson, C. Kruegel, and E. Kirda. Reducing
errors in the anomaly-based detection of web-
based attacks through the combined analysis of
web requests and SQL queries. Journal of
Computer Security, 17(3):305–329, 2009.

http://www.bcs.org/server.php?show=ConWebDoc.8852
http://www.bcs.org/server.php?show=ConWebDoc.8852

	INTRODUCTION

