RETROFITTING OF RC STRUCTURES BY USING FERROCEMENT TECHNIQUES

${ }^{1}$ K. Sankar ,M.E, ${ }^{2}$ M. Periyaswamy, ${ }^{3}$ G. Pradeep, ${ }^{4}$ S. Pradeepan, ${ }^{5}$ S. Shanmugi
${ }^{1}$ Assistant Prof. Dept. of Civil Engineering, Muthayammal engineering college, Rasipuram, Namakkal-637408.
2,3,4,5 Bachelor Of Engineering, Civil Engineering
Muthayammal Engineering College Rasipuram-637408, Anna University: Chennai 600025

Abstract

To prevent disaster in future earthquakes, one way of retrofitting the members in reinforced concrete buildings is concrete jacketing. The present study investigates the effect of jacketing on the flexural strength and performance of beams. First, slant shear tests are conducted to study the interface between old and new concrete. Second, beam specimens are tested to study the effect of jacketing on the positive bending of the span region. Third, beam-column-joint sub-assemblage specimens are tested to study the effect of jacketing on the positive bending of the beams adjacent to the joint. Further, analytical investigations are carried out to predict the experimental results. A layered approach is used for the prediction of the moment versus rotation curves for the retrofitted beam specimens. An incremental nonlinear analysis is adopted to predict the lateral load versus displacement behavior for the retrofitted sub-assemblage specimens. Finally, guidelines are provided for the retrofitting of beams by concrete jacketing. Keywords: Beam, Concrete Jacketing, Layered Analysis, Retrofit, Seismic Force, Seismic Damage, Retrofitting, Reinforced Concrete.

INTRODUCTION

Structures deteriorate due to problems associated with reinforced concrete. Natural disasters like earthquakes have repeatedly demonstrated the susceptibility of existing structures to seismic effect and hence implements like retrofitting and rehabilitation of deteriorated structures are important in high
seismicregions. Thus retrofitting and strengthening of existing reinforced concrete structures has become one of the most important challenges in Civil engineering. Engineers often face problems associated with retrofitting and strength enhancement of existing structures. Commonly encountered engineering challenges such as increase in service loads, changes inuse of the structure, design and/or construction errors, degradation problems, changes in design code regulations, and seismic retrofits are some of the causes that lead to the need for rehabilitation \& retrofitting of existing structures. Complete replacement of an existing structure may not be a cost-effective solution and it is likely to become an increased financial burden ifUpgrading is a viable alternative. In such occasions, repair and rehabilitation are most commonly used solutions. Reinforcement corrosion and structural deterioration in reinforced concrete (RC) structures are common and prompted many researchers to seek alternative materials and rehabilitation techniques. While many solutions have been investigated over the past decades, there is always a demand to search for use of new technologies and materials to upgrade the deficient structures. In this context, strengthening with Ferro cement composite materials in the form of external reinforcement is of great interest to the Civil engineering community. The conventional strengthening methods of reinforced concrete structures attempt to compensate the lost strength by adding more material around the existing sections. Thus retrofitting and rehabilitation of structures can be concluded to be the best alternative. Seismic retrofitting is the modification of existing structures to make
them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. With better understanding of seismic demand on structures and with our recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged. The main purpose of the retrofitting (strengthening) is to upgrade the resistance of a damaged building while repairing so that it becomes safer under future earthquake occurrences.

This work may involve some of the following actions:
a) Increasing the lateral strength in one or both directions by increasing column and wall areas or the number of walls and columns.
b) Giving unity to the structure, by providing a proper connection between its resisting elements, in such a way that inertia forces generated by the vibration of the building canbe transmitted to the members that have the ability to resist them.
c) Eliminating features that are sources of weakness or that produce concentration of stresses in

Some members.
d) Avoiding the possibility of brittle modes of failure by proper reinforcement and connection of resisting members.

Externally bonded, FCW elded mesh are currently being studied and applied around the world for the repair and strengthening of structural concrete members. FC composite materials are of great interest because of their superior properties such as high stiffness and strength as well as ease of installation when compared to other repair materials. Also, the noncorrosive and non-magnetic nature of the materials along with its resistance to chemicals makes FC an excellent option for external reinforcement. The addition of externally bonded FC sheets to improve the flexural and shear performance of RC beams has-been actively pursued during the recent years. Research reveals that strengthening using FC provides substantial increase in post-cracking stiffness and ultimate load carrying capacity of the members subjected to flexure and shear.

MATERIALS

Ordinary Portland Cement of Grade 53satisfying the requirements of IS 12269-1987 was used for the investigation. The initial setting time of cement was 30 minutes with a specific gravity of 3.1 . It was tested for its physical properties as per Indian Standard specifications. The fine aggregate used in this investigation was clear river sand passing through 4.75 mm sieve with a specific gravity of2.604. The grading zone of aggregate was Zone III as per Indian Standard specifications. Machine crushed broken stone in angular shape was used as coarse aggregate. The maximum size of coarse aggregate was 20 mm and its specific gravity was 2.6 . Ordinary clean potable water free from suspended particles and chemical substances was used for both mixing and curing of concrete. Design concrete mix of 1:1.25:2.72 by weight is used to achieve the strength of $30 \mathrm{~N} / \mathrm{mm} 2$. The water cement ratio of 0.45 was used. Three cube specimens were
cast and tested (at the age of 28 days)to determine the compressive strength. The average compressive strength of the concrete was $36.87 \mathrm{~N} / \mathrm{mm} 2$. HYSD bars of 12 mm diameter were used as longitudinal reinforcement and 8 mm diameter bars were used for shear reinforcement.

CASTING OF BEAMS

The moulds were prepared using plywood. The dimensions of all the specimens were identical. The length of beams was 1000 mm and the cross sectional dimensions were $150 \mathrm{~mm} \times 150 \mathrm{~mm}$. The design mix ratio was adopted for designing the beam. Thirty under reinforced beams were cast; five as control specimens and twenty five beams for retrofitting. Two bars of 12 mm diameter were provided as tension reinforcement at the soffit of the beam and bars of 8 mm diameter were provided as shear reinforcement.

Fig 1 Reinforcement detailing of the beam

Fig 2 Loading Diagram

RETROFITTING OF BEAMS

The full wrapping technique around all the four sides of the beam is used as the method of retrofitting. At the time of bonding of , the concrete surface is made rough using a wire brush and then cleaned with water to remove all dirt and debris. The beams are allowed to dry for 24 hours. The welded me share cut according to their size. After that, the epoxy resin primer is mixed in accordance with manufacturer's instructions. The mixing is carried out in a plastic container (Base: Hardener $=4 \mathrm{Kg}: 2 \mathrm{Kg}$).After uniform mixing, the epoxy resin primer is applied to the concrete surface. The beams are allowed to cure for 8 hours. The epoxy matrix is mixed in a plastic container in accordance with the manufacturer's instructions to produce a uniform mix of base
and hardener (Base: Hardener $=3.7: 1.3$). The coating isapplied on the beams and welded mesh for effective bonding of the sheets with the concrete surface. Then the welded mesh is placed on top of epoxy resin coating and the resin is squeezed through the roving of the fabric. Air bubbles entrapped at the epoxy/concrete orepoxy/fabric interface are eliminated. During hardening of the epoxy, a pressure is applied on the composite fabric surface in order to extrude the excess epoxy resin and to ensure good contact between the epoxy, the concrete and the fabric. This operation is carried out at room temperature. Concrete beams strengthened with welded mesh arecured for 3 days at room temperature before testing.

Fig 3 Retrofitting of beams

TESTING OF BEAM

The control beams and the retrofitted beams were tested for the flexural strength. The testing procedure for the all the specimens was same. The beams were cured for a period of 28 days. The surface of control beams is cleaned and washed for clear visibility of cracks. The surface of the retrofitted beams is cleaned with cotton. The two-point loading arrangement is used for testing of beams. This has the advantage of a substantial region of nearly uniform moment coupled with very small shears, enabling the bending capacity of the central portion to be assessed. The load is transmitted through a load cell. The test beam was supported on roller bearings acting as supports. The specimen was placed over the two
steel rollers bearing leaving 50 mm from the ends of the beam. The remaining 900 mm was divided into three equal parts of 300 mm as shown in the fig 2 . Two point loading arrangement was done as shown in the figure. Loading was done by hydraulic jack. Dial gauge was used for recording the deflection of the beams. The deflections of the beams were noted till the appearance of the first crack using dial gauge. The dial gauge was removed after the appearance of the crack and the load was further applied till fracture load. The ultimate load or fracture load was taken as the load at which the needle of load dial on the UTM returned back. The average of the five trials was taken and the load -deflection graph was plotted.

Fig 4 Experimental test setup

Six sets of beams were tested for their ultimate strengths. It is found that all the beams were failed in flexure. It is observed that the control beam had less load carrying capacity and high deflection values compared to that of the externally strengthened beams using FC sheets. The deflection of each beam for two point loading is analyzed. The deflections of each type of retrofitted beams are compared with the control beam. Also the load deflection behavior is compared between beams retrofitted with different FC sheets having the same reinforcement. It is noted that the behavior of the beams when bonded with FC sheets are better than the control beams. The deflections are lower when bonded externally with FC sheets. The use of FC sheet had effect in delaying the growth of crack formation.

When all the retrofitted beams are considered it is found that the beams with FC wrapping had a better load deflection behavior compared to the other strengthened beams. It is found to be more effective in improving the flexural strength of the beam. At the load of 95 KN the first crack appeared on the beam. The external strengthening of beams using FC also reduced the deflections of the beams to an extent. But it had a less load deflection performance when compared with that of FC strengthened beams. The strengthening of beams using steel, welded mesh also enhanced the resistance to deflection under applied load. FC retrofitted beams had a better load deflection behavior than the welded mesh and epoxy resin retrofitted beams.

Fig 5 Cracks on control specimen

Since the full wrapping technique is used for retrofitting, initial cracks are not visible. Further with increase in loading, propagation of the cracks took place but it had poor visibility of cracks due to the covering of the FC sheets. The
deflections and lower ultimate load carrying capacity. From the graph it is clear that all the FC retrofitted beams have better load deflection characteristics than the control specimen.

Fig 6 Failure of Retrofitted beam

Retrofitting of beams enhances the ultimate load capacity of the beams. The control specimen hadan ultimate load of 63.3 KN , whereas all the retrofitted beams had an ultimate load greater than 80 KN . The ultimate load capacity of the FC retrofitted beams increased by 125% than the control specimen and had the highest ultimate load capacity than all other retrofitted beams. FC retrofitted beams had an ultimate load of 120 KN , which 89.6% greater than that of control specimen. Among the five sets of retrofitted beams, the beams retrofitted with FC had the least ultimate load carrying capacity and the value is 86.74 KN , which is 37.03% greater than the ultimate load capacity of control specimen.

UNIT WEIGHT OF MATERIALS

Unit weight of concrete $=2500 \mathrm{~kg} / \mathrm{m}^{3}$
Unit weight of sand $=1540-1600 \mathrm{~kg} / \mathrm{m}^{3}$
Unit weight of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Unit weight of Brick $=1600 \mathrm{~kg} / \mathrm{m}^{3}$
Unit weight of cement $=1440 \mathrm{~kg} / \mathrm{m}^{3}$
Unit weight of Aggregate $=1750 \mathrm{~kg} / \mathrm{m}^{3}$
Unit weight of steel $=7850 \mathrm{~kg} / \mathrm{m}^{3}$

M30 GRADE CONCRETE OPC $=53$ GRADE

STEP : 1
Target mean strength
$\mathrm{Fck}=\mathrm{fck}+1.65 \mathrm{~s}$

$$
\begin{aligned}
& =30+1.65(5.0) \\
& =38.25 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Water cement ratio
0.45% AS per IS 4586-2000
M30 grade concrete $=0.45 \%$ of water content $=320 \mathrm{~kg} / \mathrm{m}^{3}$ minimum cement content
The water cement ratio of target mean strength of $38.25 \mathrm{~N} / \mathrm{mm}^{2}$ is 0.45

STEP : 2

Selection of water and sand content

From table 2 of IS 10262:200920 mm maximum size aggregate sand conforming grading zone 3 water content Per cubic meter $=186 \mathrm{~kg} / \mathrm{m}^{3}$
Water content $=+3 \%$
Sand content $=-3.5 \%$
Water content $=191.6$ liter $/ \mathrm{m}^{3}$
Maximum cement content $=191.6 / 0.45=$ $425.77 \mathrm{~kg} / \mathrm{m}^{3}$

CONCRETE MIX DESIGN

STEP : 3
Determination of coarse and fine aggregate
Air content
Maximum size aggregate (mm) Entrapped air as \%

10
20
3.0
2.0

$$
40
$$

1.0

20 mm aggregate $=2.0 \%$ air
Total aggregate volume $=35 \%$

STEP : 4
$\mathrm{V}=\left[\mathrm{W}+\mathrm{C} / \mathrm{S}+1 / \mathrm{Pfa} / \mathrm{S}_{\mathrm{fa}}\right]$
$\mathrm{CA}=1-\mathrm{P} \mathrm{X} \mathrm{fa} \mathrm{X} \mathrm{S} \mathrm{ca}_{\mathrm{ca}} / \mathrm{S}_{\mathrm{fa}}$
Where V = volume

$$
[1-2 / 100]=0.98 \%
$$

$\mathrm{W}=$ mass of water [191.6
$\mathrm{L} / \mathrm{m}^{3}$]
$\mathrm{C}=$ mass of cement [425.77
$\mathrm{kg} / \mathrm{m}^{3}$]
$\mathrm{S}_{\mathrm{c}}=$ specific gravity of cement
$\mathrm{P}=$ ratio of fine aggregate
$\mathrm{F}_{\mathrm{a}}, \mathrm{C}_{\mathrm{a}}=$ total mass of fine aggregate coarse aggregate $\left[\mathrm{kg} / \mathrm{m}^{3}\right.$]

DESIGN MIX FOR 1 M ${ }^{\mathbf{3}}$

WATER	CEMENT
191.6 liter	426 kg
0.46	1

SILICA FUME

- Silica fume also referred to as micro silica or condensed silica fume is another materials that is used as artificial pozzolanic admixtures.
- Silica fume is very fine pozzolanic materials composed of ultrafine ,amorphous glassy sphere of silicon di oxide.
- Produced during the manufacture of silicon or ferro-silicon by electric arc furnaces temperature of over $2000^{\circ} \mathrm{C}$.
- The micro silica is formed when SiO gas produced in the furnace mixes with oxygen, oxides to condensing into pure spherical particles of micro silica that form the major part of the smoke or fume the furnace.
- These fumes are collected and bagged called silica fume. It is further processed to remove impurities and to control particles size.
- Condensed silica fume is essentially silicon dioxide in non-crystalline form. Since it is an airborne materials like fly ash, it has spherical shape.

STEP : 5

Calculation

$$
V=[191.6+426 / 3.1+
$$

1/0.315 [$\mathrm{f}_{\mathrm{a}} / 2.60$]

$$
\begin{aligned}
& 0.98=\left[329.01+\mathrm{f}_{\mathrm{a}} \times 1.22\right] \\
& 980=\left[329.01+1.22 \mathrm{f}_{\mathrm{a}}\right]
\end{aligned}
$$

$1.22 \mathrm{f}_{\mathrm{a}}=980-329.01$

$$
1.22 \mathrm{f}_{\mathrm{a}}=650.99
$$

$$
\mathrm{F}_{\mathrm{a}}=533.59 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\mathrm{C}_{\mathrm{a}}=1-\mathrm{p} / \mathrm{p}_{\mathrm{a}} \times \mathrm{f}_{\mathrm{a}} \times \mathrm{S}_{\mathrm{ca}} / \mathrm{s}_{\mathrm{fa}}
$$

$$
=1-0.315 / 0.315 \times 533.59 \mathrm{x}
$$

2.6/2.6

$$
C_{a}=1160.34 \mathrm{~kg} / \mathrm{m}^{3}
$$

FA
533.59 kg
1.25

CA

1160.34 kg
2.72

- It is extremely fine particle size less than 1 micron and with an average diameter of about 0.1 micron ,about 100 times smaller than average cement particles.
- Silica fume has specific surface area of about $20,000 \mathrm{~m}^{2} / \mathrm{kg}$ as against 230 to $300 \mathrm{~m}^{2} / \mathrm{kg}$ in case OPC.

NOMINAL MIX MORTAR CUBE

FOR 1 CUBE

Cube mould size $=0.0706 \times 0.0706 \times 0.0706 \mathrm{~m}^{3}$
Cube mould volume $=0.003518 \mathrm{~m}^{3}$

$$
\text { Ratio }=1: 3
$$

QUANTITIES

Cement $=1 / 1+3 \times 0.0003518 \times 144 \times 1.33$

$$
\begin{aligned}
& =0.1684 \mathrm{~kg} \\
\text { Sand } & =0.1684 \mathrm{x} 3 \\
& =0.5053 \mathrm{~kg}
\end{aligned}
$$

Water cement ratio $=0.45$
Water content $=0.45 \times 168.4$

$$
=75.78 \mathrm{ml}
$$

ADMIXTURE MIX MORTAR CUBE SILICA FUME FOR 1 CUBE

```
\(0.00842 \mathrm{~kg}=8.42 \mathrm{gm}\)
QUANTITIES
Cement \(=0.15998 \mathrm{~kg}\)
Sand \(=0.5053 \mathrm{~kg}\)
Water \(=75.78 \mathrm{ml}\)
```

About 5\% of silica fume $5 / 100 \times 0.1684=$

About 6\% of silica fume 6/100 x $0.1684=$ $0.00104 \mathrm{~kg}=10.104 \mathrm{gm}$
QUANTITIES
Cement $=0.158 \mathrm{~kg}$
Sand $=0.5053 \mathrm{~kg}$
Water $=75.78 \mathrm{ml}$
About 7 \% of silica fume 7/100 x $0.1684=$ $0.01178 \mathrm{~kg}=11.788 \mathrm{gm}$
QUANTITIES
Cement $=0.156612 \mathrm{~kg}$
Sand $=0.5053 \mathrm{~kg}$
Water $=75.78 \mathrm{ml}$

About 8\% of silica fume 8/100 x $0.1684=$ $0.013472 \mathrm{~kg}=13.471 \mathrm{gm}$
 QUANTITIES

Cement $=0.154 \mathrm{~kg}$
Sand $=0.5053 \mathrm{~kg}$
Water $=75.78 \mathrm{ml}$
About 9\% of silica fume 9/100 $\times 0.1684=$ $0.015156 \mathrm{~kg}=15.15 \mathrm{gm}$
QUANTITIES
Cement $=0.153 \mathrm{~kg}$
Sand $=0.5053 \mathrm{~kg}$
Water $=75.78 \mathrm{ml}$
About 10\% of silica fume 10/100 x 0.1684
$=0.01684 \mathrm{~kg}=16.84 \mathrm{gm}$
QUANTITIES
Cement $=0.151 \mathrm{~kg}$
Sand $=0.5053 \mathrm{~kg}$
Water $=75.78 \mathrm{ml}$

```
    DESIGN MIX FOR CONCRETE CUBE
M 30 GRADE CONCRETE FOR 1 CUBE
    M \(30=1: 1.25: 2.72=4.97\)
    Mould size \(=0.150 \times 0.150 \times 0.150 \mathrm{~m}^{3}\)
    Volume \(=0.003375 \mathrm{~m}^{3}\)
\(1 / 1+1.25+2.72 \times 0.003375 \times 144011.54\)
```


QUANTITIES

```
Cement \(=1.505 \mathrm{~kg}\)
Sand \(\quad=1.505 \times 1.25=1.88125 \mathrm{~kg}\)
Aggregate \(=1.505 \times 2.72=4.0936 \mathrm{~kg}\)
Water ratio \(=0.45 \times 1505=677.25 \mathrm{ml}\)
DESIGN MIX FOR CONCRETE BEAMS
M 30 GRADE CONCRETE FOR 1 BEAM
M \(30=1: 1.25: 2.72=4.97\)
```


OBSERVATIONS:

Mould size $=1 \times 0.15 \times 0.15 \mathrm{~m}^{3}$
Volume $=0.0225 \mathrm{~m}^{3}$
M30 design mix ratio $=1: 1.25: 2.72$
1/1+1.25+2.72 x 0.0225×144011.54
QUANTITIES
Cement $\quad=10.039 \mathrm{~kg}$
Sand $\quad=10.039 \times 1.25=12.54 \mathrm{~kg}$
Aggregate $=10.039 \times 2.72=12.54 \mathrm{~kg}$
Water ratio $=0.45 \times 10.039=4.5$ liter
TESTS ON FINE AND COARSE
AGGREGATE
I. STANDARD CONSISTENCY OF CEMENT:
To determine the quantity of water required to produce a cementpaste of standardconsistency. Standard consistency is defined as that consistency which will permit the Vicat's plunger to penetrate to a point 5 to 7 mm from the bottom of the Vicatmould when the cement is tested. The Vicat's apparatus consists of a frame and a moving rod weighing 400 gm . The plunger is kept at the lower end of the rod. It is a cylinder 10 mm . Diameter, A pointer connected to the rod will move along with it when it is released, over a graduated scale kept in front of it. The cement paste to be tested is kept in the Vicat'smould kept below the rod on a glass plate.

PROCEDURE:

1.Carefully weigh 400 gm of cement and place it on a non-porous surface.
2.Form a crater in the center in which add about 100 to 120 cc. of water.
3.Thoroughly mix the cement with water and fill, the Vicat'smould with the paste.
4.The interval from the moment of adding water to the dry cement to the moment of commencing to fill the mould is known as the time of gauging and shall not be less than 3 minutes and more than 5 minutes. Lower the plunger gently and test the penetration.
5.If the penetration is between 5 to 7 mm from the bottom of the mould the quantity of water added is the required consistency.
6.Otherwise repeat the test with different percentages of water until the required penetration is obtained. Express the amount of water as a percentage by weight of the dry cement.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

S. No.	Weight of Cement W_{1}	Weight of water \mathbf{W}_{2}	Reading on scale Mm	\mathbf{W}_{2} / W_{1}	Standard consistency
1	400 gram	100 ml	15 mm	0.25	25\%
2	400 gram	120 ml	13.5 mm	0.3	30\%
3	400 gram	160 ml	10 mm	0.4	40\%
4	400 gram	180 ml	7 mm	0.45	45\%
5	400 gram	200 ml	5 mm	0.5	50\%

CALCULATIONS:

Weight of cement taken $=\mathrm{W}_{1}$.
Weight of water added when the plunger has a penetration of 5 to 7 mm from the bottom of the mould $=\mathrm{W}_{2}$
Percentage of water for standard consistency p $=\left(\mathrm{W}_{2} / \mathrm{W}_{1}\right) \times 100$
(180/400)x100= $0.45 \times 100=45 \%$

RESULT:

Percentage of water for standard consistency is $=45 \%$

II. SETTING TIME OF CEMENT:

1.Preparation of Test Block: Prepare a neat cement paste by gauging the cement with 0.85 times the water required to give the paste of standard consistency. Start a stopwatch at the instant when water is added to the cement. Fill the Vicat'smould with a cement paste within three to five minutes after addition of water. Fill the mould completely and smooth off the surface of this paste making it level with the top of the mould. The cement block thus prepared in the mould is test block.
2. Clean appliances shall be used for gauging. The temperature of water and that of the test room at the time of gauging shall be within (27 ± 2) 0 C.
3. During the test the block shall be kept at a temperature of $(27 \pm 2) 0 \mathrm{C}$ and at least 90% relative humidity.
a) Determination of Initial Setting Time:

Place the test block confined in the mould and resting on the nonporous plate, under the rod bearing the needle, lower the needle gently in contact with the surface of the test block and quickly release, allowing it to penetrate into the test block. In the beginning the needle will completely pierce the test block. Repeat this procedure until the needle, when brought in contact with the test block and released as described above, fails to pierce the block for 5 to 7 mm measured from the bottom of the mould. The period elapsing between the time when water is added to the cement and this time shall be initial setting time.
b)Determination of Final Setting Time:

Replace the needle of the Vicat's apparatus with the needle with a circular attachment. The cement shall be considered as finally set, when upon lowering the needle gently to the surface of the test block the needle makes an impression there on, while the attachment fails to do so. In other words the paste has attained such hardness that the centre needle does not pierce through the paste more than 0.5 mm . The period elapsing between the time when water is added to the cement and the time at which the needle makes an impression on the surface on the test block while the attachment fails to do so shall be the final setting time.

OBSERVATIONS:

INITIAL SETTING TIME:

S. No.	Time	Reading on the scale of Vicat's apparatus
1	10 minutes	12 mm
2	20 minutes	10 mm
3	30 minutes	7 mm

FINAL SETTING TIME:

S. No.	Time	Reading on the scale of Vicat's apparatus
1	120 minutes	4 mm
2	300 minutes	2.5 mm
3	600 minutes	0.5 mm

RESULT:

Initial setting time ofthecement $=30$ minutes Final setting time ofthecement $=600$ minutes
III. SPECIFIC GRAVITY OF CEMENT:

Specific gravity of cement is defined as the ratio of weight of a given volume of cement at a given temperature to the weight of an equal volume of distilled water at the same temperature both weights being taken in air.

1. Wt. of empty dry specific gravity bottle

$$
=W_{1}
$$

2. Wt. of bottle + Cement(filled1/4 to $1 / 3$) = W_{2}
3. Wt. of bottle + Cement (Partly filled) + Kerosene $=\mathrm{W}_{3}$
4. Wt. of bottle + Kerosene (full). $=\quad \mathrm{W}_{4}$
5. Wt. of bottle + water (full)

$$
=\quad W_{5}
$$

$$
\begin{aligned}
\mathrm{W} 1 & =0.640 \mathrm{~kg} \\
\mathrm{~W} 2 & =0.820 \mathrm{~kg} \\
\mathrm{~W} 3 & =1.580 \mathrm{~kg} \\
\mathrm{~W} 4 & =1.600 \mathrm{~kg} \\
\mathrm{~W} 5 & =1.600 \mathrm{~kg}
\end{aligned}
$$

Specific gravityofkerosene $\quad \mathrm{S}_{\mathrm{k}}=\left(\mathrm{W}_{4}-\mathrm{W}_{1}\right) /\left(\mathrm{W}_{5}-\right.$ W_{1})

$$
\begin{aligned}
= & 0.96 \\
& \left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right) \times \mathrm{S}_{\mathrm{k}}
\end{aligned}
$$

Specific gravity of Cement $=$

$$
\left(\mathrm{W}_{4}-\mathrm{W}_{1}\right)-\left(\mathrm{W}_{3}-\mathrm{W}_{2}\right)
$$

RESULT:

Specific Gravity of Cement is $=\underline{3.1}$

IV. COMPRESSIVE STRENGTH OF CEMENT:

1.Standard sand: It shall pass the 850 micron I.S. sieve and not more than 10% by weight shall pass the 600 micron I.S. sieve. Take 200 gms of cement and 600 gms of standard sand in a pan. Mix it dry with a trowel for one minute and then add water. The quantity of water shall be ($0.25 \mathrm{P}+3$) percent of combined weight of cement and sand, where P is the $\%$ of water required to produce a paste of standard consistency determined earlier. Add water and mix it until the mixture is of uniform colour. The time of mixing shall not be less than 3 minutes and not greater than 4minutes.
2.Immediately after mixing the mortar place the mortar in the cube mould and tamp with the help of the tamping rod. The mortar shall be rodded 20times in about 8 seconds to ensure elimination of entrainedair.
3.If vibrator is used the period of vibration shall be two minutes at the specified speed of 12000 vibration perminutes.
4.Then place the cube moulds in an atmosphere of 270 to 20 c and 90% relative humidity, submerge in clear fresh water tilltesting.
5.Take out the cubes from water just before testing. Testing should be done on their sides with out any packing. The rate of loading should be uniform and of $350 \mathrm{~kg} / \mathrm{cm} 2 / \mathrm{minute}$.
6.Three cubes should be tested and their average should be taken as the test result. Report the result inKg/cm2.
RESULT:
The compressive strength of cement concrete is $52 \mathrm{~N} / \mathrm{mm} 2$.

MORTAR CUBE COMPRESSIVE TEST ON CONCRETE
1.Place the cube at the centre of the lower platen of the compression testing machine in such a manner that the load shall be applied to opposite sides of the cube as cast, that is, not to the top and bottom.
2.The axis of the specimen shall be carefully aligned with the centre of the thrust of the spherically seated platen. No packing shall be used between the faces of the test specimen and the steel platen of the testing machine.
3.The load shall be applied without shock and increased continuously at a rate of approximately $140 \mathrm{~kg} / \mathrm{cm} 2 / \mathrm{min}$. until the resistance of the specimen to the increasing load breaks down and no greater load can be sustained.
4.The maximum load applied to the specimen shall then berecorded

OBSERVATION:

Measured sideofcube

Weight of the cube	$=8.780 \mathrm{~kg}$.
Load at first crack	$=800 \mathrm{kN}$
Load at ultimate failure	$=900 \mathrm{KN}$

RESULT:

Compressive Strength on Concrete $=\underline{32}$ $\mathrm{N} / \mathrm{mm}^{\underline{2}}$

TEST ON AGGREGATES

I. AGGREGATE CRUSHING VALUE TEST:
The aggregate passing 12.5 mm sieve and retained on 10 mm IS sieve is selected for standard test. The aggregate should be in surface dry condition before testing. The aggregate may be dried by heating at a temperature $100^{\circ} \mathrm{C}$ for a period of 4 hours and is tested after being cooled to
room temperature.
The cylindrical measure is filled by the test sample of aggregate in three layers of approximately equal depth, each layer being tamped 25 times by the rounded end of the tamping rod. After the third layer is tamped, the aggregate at the top of the cylindrical measure is leveled off by using the tamping rod as a straight edge. About 6.5 kg of aggregate is required for preparing two test samples. The test sample thus taken is then weighed. The same weight of the sample is taken in the repeattest. The cylinder of the test apparatus is placed in position on the base plate; one third of the test sample is placed in the cylinder and tamped 25 times by the tamping rod. Similarly, the other two parts of the test specimen are added, each layer being subjected to 25 blows. The total depth of the material in the cylinder after tamping shall however be 10 cm .
The surface of the aggregate is leveled and the plunger inserted so that it rests on this surface in level position. The cylinder with the test sample and plunger in position is placed on compression testing machine. Load is then applied through the plunger at a uniform rate of 4 tones per minute until the total load is 40 tones, and then the load is released. Aggregates including the crushed portion are removed from the cylinder and sieved on a 2.36 mm IS sieve. The material which passes this sieve iscollected. The above crushing test is repeated on second sample of the same weight in accordance with above test procedure. Thus two tests are made for the same specimen for taking an average value.

CALCULATION:

Total weight of dry sample taken $=\mathrm{W}_{1} 0.66 \mathrm{gm}$. Weight of the portion of crushed material passing $\quad 2.36 \mathrm{~mm} \quad$ ISsieve $=W_{2} \quad 0.100 \quad \mathrm{gm}$ Aggregate crushing value $=100 \quad W_{2}$ / W_{1}

RESULT:

The Aggregate crushing value is $=15.15 \%$

APPLICATIONS OF AGGREGATE

 CRUSHING TEST:The aggregate crushing value is an indirect measure of crushing strength of the aggregates.

Low aggregate crushing value indicates strong aggregates, as the crushed fraction is low. Thus the test can be used to assess the suitability of aggregates with reference to the crushing strength for various types of pavement components. The aggregates used for the surface course of pavements should be strong enough to withstand the high stresses due to wheel loads, including the steel tyres of loaded bullock-carts.
However as the stresses at the base and subbase courses are low aggregates with lesser crushing strength may be used at the lower layers of thepavement. Indian Roads Congress and ISI have specified that the aggregate crushing value of the coarse aggregates used for cement pavement at surface should not exceed 30 percent. For aggregates used for concrete other than for wearing surfaces, the aggregate crushing value shall not exceed 45 percent, according to the ISS. However aggregate crushing values have not been specified by the IRC for coarse aggregates to be used in bituminous pavement construction methods.

II. AGGREGATE
 IMPACT

VALUE TEST:

The test sample consists of aggregates passing 12.5 mm sieve and retained on 10 mm sieve and dried in an oven for four hours at a temperature $100^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$ and cooled. The aggregates are filled up to about one-third full in the cylindrical measure and tamped 25 times with rounded end of the tamping rod. Further quantity of aggregates are struck off using the tamping rod as straight edge. The net weight of the aggregates in the measure is determined to the nearest gram and this weight of the aggregates is used for carrying out duplicate test on the same material. The impact machine is placed with its bottom plate fiat on the floor so that the hammer guide columns are vertical. The cup is fixed firmly in position on the base of the machine and the whole of the test sample from the cylindrical measure is transferred to the cup and compacted by tamping with 25 strokes.The hammer is raised until its lower face is 38 cm above the upper surface of the aggregates in the cup, and allowed to fall freely on the aggregates. The test sample is subjected to a total of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

15 such blows, each being delivered at an interval of not less than one second. The crushed aggregate is then removed from the cup and the whole of it sieved on the 2.36 mm sieve until no further significant amount passes. The fraction passing the sieve is weighed accurate to 0.1 g . The fraction retained on the sieve is also weighed and if the total weight of the fractions passing and retained on the sieve
is added, it should not be less than the original weight of the specimen by more than one gram; if the total weight is less than the original by over one gram, the result should be discarded and a fresh test made. The above test is repeated on fresh aggregate sample.

RESULT:The Impact Value of given Aggregate is $=\underline{15.98} \%$

TABLE 1:

Maximum Allowable Impact Value of Aggregate in Different Types of Pavement Material/Layers

Serial No.	Types of pavement material/layer		Aggregate impact value, maximum \%
1	Water bound macadam(WBM), sub-base course	50	
2	Cement concrete, base course (as per ISI)	45	
3	(i)	WBM base course with bitumensurfacing	
(ii)	Built up-spray grout, basecourse	40	
4	Bituminous macadam, base course		
5	(i)	WBM, surfacingcourse	
(ii)	Built-up spray grout, surfacingcourse		
(iii)	Bituminous penetrationmacadam		
(iv)	Bituminous macadam, bindercourse		
(v)	Bituminous surfacedressing		
(vi)	Bituminouscarpet		
(vii)	Bituminous/ Asphalticconcrete		
(viii)	Cement concrete, surfacecourse	35	

I. SPECIFIC GRAVITY AND WATER ABSORPTION TEST:
To find out the specific gravity and water absorption of the given aggregate. About 2 Kg of the aggregate sample is washed thoroughly and placed in the wire basket when immersed in distilled water. The basket and the sample are then weighed $\left(\mathrm{W}_{1}\right)$ while suspended in water at a temp of $22^{\circ} \mathrm{C}$ to $32^{\circ} \mathrm{C}$. The aggregates are then placed on the absorbent clothes and should be
cleaned. The surface dry an aggregate is then weighed (W_{2}). The aggregate is placed in a shallow tray and kept in an oven maintained at a temp of $110^{\circ} \mathrm{C}$ for 24 hours. It is then removed from the oven, cooled in an air tight container and weighted $\left(W_{4}\right)$

OBSERVATIONS:

Weight of saturated aggregate suspended in water with the basket $=\mathrm{W}_{1}(620 \mathrm{gram}) \mathrm{Weight}$ of
basket above suspended in water $=\mathrm{W}_{2}$ (400 gram)
Weight of saturated aggregate in water $=$ ($\mathrm{W}_{1}-\mathrm{W}_{2}$) (220 gram)
Weight of saturated surface dry aggregate in air $=\mathrm{W}_{3}(1.14 \mathrm{~kg})$
Weight of Water equal to the volume of the aggregate $=\mathrm{w}_{4}(1.96 \mathrm{~kg})$

RESULT:

The Specific Gravity of Coarse Aggregate is $=2.72$
The Water Absorption of Coarse Aggregate is = 11.5%

I. LOS ANGLES ABRASION TEST:

The apparatus consists of Los Angeles machine, abrasive charge and sieves. Los Angeles machine consists of a hollow steel cylinder, closed at both ends, having an inside diameter 70 cm and an inside length of 50 cm , mounted on stub shafts about which it rotates on a horizontalaxis. An opening is provided in the cylinder for the introduction of the test sample. A removable cover of the opening is provided in such a way that when closed and fixed by bolts and nut, it is dust-tight and the interior surface is perfectly cylindrical. A removable steel shelf projecting radial 8.8 cm into the parallel to the axis. The shelf is fixed at a distance of 12.5 cm from the opening, measured along the circumference in the direction of rotation. Abrasive charge, consisting of cast iron spheres approximately 4.8 cm in diameter and 390 to 445 g in weight are used. The weight of the sphere of the aggregates tested. The aggregates grading have been standardized as A, B, C, D, E, F and G for this test and the IS specificationsforthegradingandabrasivechargeto

TABLE 1:

beusedaregiveninTable IS sieve with 1.70 mm opening is used for separating the fines after the abrasion test.
Clean aggregates dried in an oven at $105-110^{0}$ C to constant weight, conforming to any one of the grading A to G, as per Table 11.1 is used for the test. The grading or grading's used in the test should be nearest to the grading to be used in the construction. Aggregates weighing 5 kg for grading A, B, C or D and 10 kg for grading E, F or G may be taken as test specimen and placed in the cylinder. The abrasive charge is also chosen in accordance with Table 1 depending on the grading of the aggregate and is placed in the cylinder of the machine. The cover is then fixed dust-tight. The machine is rotated at a speed of 30 to 33 revolutions per minute.Themachineisrotatedfor500revolutionsf orgradingA,B,CandD,for grading's E, F and G, it shall be rotated for 1,000 revolutions. The machine should be balanced and driven in such a way as to maintain uniform peripheral speed. After the desired number of revolutions, the machine is stopped and the material is discharged from the machine taking care to take out entire stone dust. Using a sieve of size larger than 1.70 mm IS sieve, 1.7 mm IS sieve. The portion of material coarser than 1.7 mm size is washed and dried in an oven at 105 to $110^{0} \mathrm{C}$ to constant weight and weighed correct to onegram.

CALCULATION:

The difference between the original and final weights of the sample is expressed as percentage of the original weight of the sample is reported as the percentage wear.

Specifications for Los Angeles Test

Grad e	Weight in grams of each test sample in the size range, mm (Passing and retained on square holes)										Abrasive Charge	
	80-63	$\begin{gathered} 63- \\ 50 \end{gathered}$	$\begin{array}{r} \hline 50- \\ 40 \end{array}$	$\begin{aligned} & 40- \\ & 25 \end{aligned}$	$\begin{gathered} 25- \\ 20 \end{gathered}$	$\begin{gathered} 20- \\ 12.5 \end{gathered}$	$\begin{gathered} 12.5 \\ - \\ 10 \end{gathered}$	$\begin{aligned} & 10- \\ & 6.3 \end{aligned}$	$\begin{aligned} & 6.3- \\ & 4.75 \end{aligned}$	$\begin{gathered} 4.75 \\ - \\ 2.36 \end{gathered}$	No. of Spheres	Wt . of charge
A	-	-	-	1250	1250	1250	1250	-	-	-	12	$\begin{array}{r} 5000 \\ \pm 25 \end{array}$

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

B - - - - - 2500 2500 - - - 11 4584 ± 25 C - - - - - - - 2500 2500 - 8 3330 ± 20
D

Let the original weightofaggregate $=\mathrm{W}_{1} 5 \mathrm{~kg}$
Weight of aggregate retained on 1.70 mm IS sieve afterthetest $\quad=\mathrm{W}_{2} 1.26 \mathrm{~kg}$
Loss in weight duetowear

$$
\begin{aligned}
& =\left(\mathrm{W}_{1}-\mathrm{W}_{2}\right) \times 100 \\
& \quad=(5-1.26) \times 100 \\
& \quad=25.2 \%
\end{aligned}
$$

RESULT:

The Average Value of Los Angles Abrasion Test is = $\underline{25.2 \%}$

TABLE 1:

Maximum Allowable Los Angeles Values of Aggregates in Different Types of Pavement Layers

Serial No.	Types of pavement layer		
1	Was Angeles abrasion Bound Macadam(WBM), sub-base course value, maximum \%		
2	(i) WBM base course with bituminous surfacing (ii) Bituminous Macadam base course (iii) Built-up spray grout base course	60	
3	(i) WBM surfacing course (ii) Bituminous Macadam binder course (iii) Bituminous penetration Macadam (iv) Built-up spray grout binder course	50	

| 4 | (i) Bituminous carpet surface course
 (ii) Bituminous surface dressing, single or two coats
 (iii) Bituminous surface dressing, using pre-coated
 aggregates.
 Cement concrete surface course (as per IRC)
 5 (iv) Bituminous/Asphalt concrete surface course
 (ii) Cement concrete pavement surface course (as per ISI) 35 |
| :--- | :--- | :--- | :---: |

III. AGGREGATE SHAPE TEST:

a) FLAKINESS INDEX:

The sample is sieve with the sieves mentioned in Table 1. A minimum of 200 pieces of each fraction to be tested are taken and weighed $=\mathrm{W}_{1}$ g. In order to separate flaky materials, each fraction is then gauged for thickness on a thickness
gauge shown in Fig. 15.1 or in bulk on sieves having elongated slots. The width of the slot should be of the dimensions specified in column (3) of Table 15.1 for the appropriate size of material. The amount of flaky material passing the gauge is weighed to an accuracy of at least 0.1 percent of the test sample.

TABLE 1:

Dimensions of Thickness and Length Gauges

Size of aggregate		(a) Thickness gauge (0.6 times the mean sieve), Mm	(b) Length gauge (1.8 times the mean sieve) sieve Mm
Passing through IS			
$\mathbf{1}$	Retained on IS sieve mm	$\mathbf{2}$	$\mathbf{3}$
63.0	50.0	33.90	$\mathbf{4}$
50.0	40.0	27.00	-
40.0	25.0	19.50	81.0
31.5	25.0	16.95	58.5
25.0	20.0	13.50	-10.80
20.0	16.0	8.55	40.5
16.0	12.5	6.75	32.4
12.5	10.0	4.89	25.6
10.0	06.3		20.2
			14.7

CALCULATION AND RESULT:

In order to calculate the flakiness index of the entire sample of aggregates first the weight of each fraction of aggregate passing and retained on the specified set of sieves is noted. As an example let 200 pieces of the aggregate passing 50 mm sieve and retained on 50 mm sieve be= $\mathrm{W}_{1} \mathrm{~g}$. Each of the particles from this fraction of aggregate is tried to be passed through the slot of the specified thickness of the thickness gauge; in this example the width of the appropriate gauge of the thickness gauge is 27.0 mmgauge. Let the weight of the flaky material passing this gauge be $\mathrm{W}_{1} \mathrm{~g}$. Similarly the weights of the fractions passing and retained the specified sieves, W_{1}, W_{2}, W_{3}, etc., are weighed and the total weight $\mathrm{W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3+\ldots} \ldots \mathrm{W}$ g is found. Also the weights of materials passing each of the specified thickness gauge are found $=\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3} \ldots$ and the total weight of material passing the different thickness gauges $=\mathrm{W}_{1}+$ $\mathrm{W}_{2}+\mathrm{W}_{3+} \ldots=\mathrm{Wg}$ is found. Then the flakiness index is the total weight of the flaky material passing the various thickness gauges expressed as a percentage of the total weight of the samplegauged.
Flakiness Index $=\left(\mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}+\ldots\right) 100$ percent $=100 \mathrm{w}$ percent $\mathrm{W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3+} \ldots$
$\mathrm{W}=\underline{12.6 \%}$

b) ELONGATION INDEX:

The elongation index of an aggregate is the percentage by weight of particles whose greatest dimension (length) is greater than one and four fifth times (1.8 times) their mean dimension. The elongation test is not applicable to sizes smaller than 6.3 mm . The sample is sieved through the IS sieves specified in Table 15.1. A minimum of 200 pieces of each fraction is taken and weighed. In order to separate elongated material, each fraction is then gauged individually for length in a length gauge.
The gauge length used should be those specified in column 4 of the Table for the appropriate material. The pieces of aggregates from each fraction tested which could not pass through the specified gauge length with its long side are elongated particles and are collected separately to find the total weight of aggregate retained on the length gauge from each fraction. The total amounts of elongated material retained by the
length gauge are weighed to an accuracy of at least 0.1 percent of the weight of the testsample.

CALCULATION AND RESULT:

In order to calculate the elongation index of the entire sample of aggregates, the weight of aggregates which is retained on the specified gauge length from each fraction is noted. As an example, let 200 pieces of the aggregate passing 40 mm sieve and retained 25 mm sieve $\mathrm{W}_{1} \mathrm{~g}$. Each piece of these are tried to be passed through the specified gauge length of length gauge, which in this example is $(40+25) / 2 \times 1.8$ $=58.5 \mathrm{~mm}$ with its longest side and those elongated pieces which do not pass the gauge are separated and the total weight determined $=$ $\mathrm{w}_{1} \mathrm{~g}$. Similarly the weight of each fraction of aggregate passing and retaining on specified sieves sizes are found, $\mathrm{W}_{1}, \mathrm{~W}_{2} \mathrm{~W}_{3} \ldots$ and the total weight sample determined $=\mathrm{W}_{1}+\mathrm{W}_{2}$ $+\mathrm{W}_{3+} \ldots=\mathrm{Wg}$
Also the weight of material from each fraction retained on the specified gauge length are found $=\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots$ and the total weight retained determined $=x_{1}+x_{2}+x_{3}+\ldots=$ Xg.. The elongation index is the total weight of the material retained on the various length gauges, expressed as a percentage of the total weight of the sample gauged.
Elongation Index $=\left(x_{1}+x_{2}+x_{3}\right) 100=100 \mathrm{X}$ percent $W_{1}+W_{2}+W_{3}+\ldots$
$\mathrm{W}=\underline{19.6 \%}$

COMPRESSIVE STRENGTH OF CEMENT WITH ADMIXTURES SILICA FUME

1. Place the cube at the center of the lower platen of the compression testing machine in such a manner that the load shall be applied to opposite sides of the cube as cast, that is, not to the top andbottom.
2. The axis of the specimen shall be carefully aligned with the centre of the thrust of the spherically seated platen. No packing shall be used between the faces of the test specimen and the steel platen of the testingmachine.
3. The load shall be applied without shock and increased continuously at a rate of approximately $140 \mathrm{~kg} / \mathrm{cm}^{2} / \mathrm{min}$. until the resistance of the specimen to the
increasing load breaks down and no greater load can besustained.
4. The maximum load applied to the
specimen shall then berecorded
5. Cement is gradually reduced and silica fume is added.

TABULATION

S.NO	PERCENTAGE OF SILICAFUME	COMPRESSIVE STRENGTH AT $\mathbf{2 8}^{\text {TH }}$ DAY TESTING
1	5%	$36 \mathrm{~N} / \mathrm{mm}^{2}$
2	6%	$40 \mathrm{~N} / \mathrm{mm}^{2}$
3	7%	$46 \mathrm{~N} / \mathrm{mm}^{2}$
4	8%	$50 \mathrm{~N} / \mathrm{mm}^{2}$
5	9%	$54 \mathrm{~N} / \mathrm{mm}^{2}$
6	10%	$52 \mathrm{~N} / \mathrm{mm}^{2}$

RESULT ANALYSIS

FLEXURAL TEST ON

RETROFITTED BEAM:

o This test method is used to determine the flexural strength of specimens prepared and cured in accordance with the specifications. Results are calculated and reported as the modulus of rupture.
o The strength determined will vary where there are differences in specimen size, preparation, moisture condition, curing, or where the beam has been molded or swayed to size.
o The results of this test method may be

1) Flexural strength is one measure of the tensile strength of concrete. It is a measure of an unreinforced concrete beam or slab to resist failure in bending. It is measured by loading 6×6-inch ($150 \times 150-$ mm)concrete beams with a span length at least three times the depth. The flexural strength is expressed as Modulus of Rupture (MR) in psi (MPa) and is determined by standard test methods ASTM C 78 (third-point loading) or ASTMC293 (center-point loading). FlexuralMRisabout10to20percentofcompr essive strength depending on the type, size and volume of coarse aggregate used. However, the best correlation for specific materials is obtained by laboratory tests for given materials and mix design. The MR deter- mined by third-point loading is lower than the MR determined by centerpoint loading, sometimes by as much as15\%.
2) Designers of pavements use a theory based on flexural strength. Therefore, laboratory mix design based on flexural
strength tests may be required, or a cementitious material content may be selected from past experience to obtain the needed design MR.Some also use MR for field control and acceptance of pavements. Very few use flexural testing for structural concrete. Agencies not using flexural strength for field control generally find the use of compressive strength convenient and reliable to judge the quality of the concrete as delivered.
3) Specifications and investigation of apparent low strength should take into account the higher variability of flexural strength results. Standard deviation for concrete flexural strengths upto 800 psi(5.5MPa)for projects with good control range from about 40 to 80 psi (0.3 to 0.6 MPa). Standard deviation values over 100 psi (0.7 MPa) may indicate testing problems. There is a high likelihood that testing problems, or moisture differences within a beam caused from premature drying, will cause low strength.

Testing method:

To evaluate bending performance of beam with flexural-strengthened expansive SHCC, experiment objects were installed as shown in Fig. 3 Three SDTs were installed in the middle to measure deflection of the beam, and three crack gauges were attached to lower part of beam while one was to upper part to measure crack width. In addition, 2-axis gauge and concrete gauge were attached to boundary surface between SHCC strengthen and concrete to measure deflection of SHCC strengthen and concrete interface, while a gauge was installed on tensile and compression side reinforcement bar of beam to measure deformation rate of the bar. Monotonic 4 point loading was carried out by using deformation control method with 500 kN actuator to measure loading of the beam.

Related Theory:

Difficulties in determining Tensile Strength of Concrete:
There are considerable experimental difficulties in determining the true tensile strength of concrete. In direct tension test following are the difficulties:
> When concrete is gripped by the machine it may be crushed due the large stress concentration at the grip.
> Concrete samples of different sizes and diameters show large variation inresults.
$>$ If there are some voids in sample the test may show very smallstrength.
$>$ If there is some initial misalignment in fixing the sample the results are notaccurate.

Tests for Tensile Strength of Concrete:

Following tests are used to determine the tensile strength of concrete.

- Split CylinderTest
- Double PunchTest
- Modulus of RuptureTest

Modulus of Rupture:

In a flexural test on a plane concrete specimen, the maximum tensile stress reached at the bottom fiber of a standard size prism (beam) under predefined loading type is called modulus of rupture.

Type / Size of the Specimen for the Test:

The specimen used is a prism, square in cross-section and having a certain length. There are two standard sizes of the specimen that can be used for specified aggregate sizes.

1) $150 \times 150 \times 1000(\mathrm{~mm})$
2) $100 \times 100 \times 500(\mathrm{~mm})$
\checkmark The size ($150 \times 150 \times 1000 \mathrm{~mm}$) can be used for all sizes of the aggregate particles.
\checkmark The size ($100 \times 100 \times 500 \mathrm{~mm}$) can only be used for the aggregate sizes less than 25 mm . We are using this size for our test.

Procedure:

I. Flexural tests of moist-cured specimens shall be made as soon as practical after removal from moist storage. Surface drying of the specimen results in a reduction in the measured flexural strength.
II. When using molded specimens, turn the test specimen on its side with respect to its position as molded and center it on the support blocks. When using sawed specimens, position the specimen so that the tension face corresponds to the top or bottom of the specimen as cut from the parent material. Center the loading system in relation to the applied force. Bring the load-applying blocks in contact with the surface of the specimen at the third points and apply a load of between 3 and 6% of the estimated ultimate load or as per ASTMstandard.
III. Grind, cap, or use leather shims on the specimen contact surface to eliminate any gap in excess of 0.004 in. (0.10 mm) in width. Gaps in excess of 0.015 in . $(0.38 \mathrm{~mm}$) shall be eliminated only by capping or grinding. Grinding of lateral surfaces should be minimized in as much as grinding may change the physical characteristics of the specimens. Capping shall be in accordance with the applicable sections of Practice C617.
IV. Load the specimen continuously and without shock. The load shall be applied at a constant rate to the breaking point. Apply the load at a rate that constantly increases the extreme fiber stress between 125 and $175 \mathrm{psi} / \mathrm{min} \quad(0.86$ and 1.21
$\mathrm{MPa} / \mathrm{min}$) until rupture occurs. The loading rate is calculated using the followingequation:

Calculations:

Case-1:
If the fracture initiates in the tension surface within the middle third of the span length, calculate the modulus of rupture as follows:

$$
\mathbf{R}=\mathbf{P L} / \mathbf{b d}^{2}
$$

Where:
$\mathrm{R}=$ modulus of rupture, psi or MPa,
$\mathrm{P}=$ maximum applied load indicated by the testing machine, lbf or $\mathrm{N}, \mathrm{L}=$ span length, inch
or mm,
$\mathrm{b}=$ average width of specimen, inch or mm, at the fracture, and
$\mathrm{d}=$ average depth of specimen, inch or mm, at the fracture.
$R=98500 \times 1 /(0.15 \times 0.15)^{2}$
$R=19.4 \mathrm{MPa}$
Note: The weight of the beam is not included in the above calculation.

RESULT

FLEXURAL STRENGTH TEST RESULTS

SPECIMAN	$\begin{gathered} \hline \text { SPECIMAN } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { ULTIMATE } \\ & \text { LOAD } \\ & \text { (KN) } \end{aligned}$	$\begin{aligned} & \hline \text { ULTIMATE } \\ & \text { LOAD } \\ & \text { AVERAGE } \end{aligned}$	MODULUS OF RUPTURE (MPa)	MODULUS OF RUPTURE AVERAGE	TOUGNESS
CONVENTIONAL BEAM	SC 1	98.5	98.16	19.4	18.86	25.27
	SC 2	98		18.6		
	SC 3	98		18.6		
RC BEAM WITH FERROCEMENT	SF 1	120	119.5	20	20.23	40.26
	SF2	120.5		21.4		
	SF 3	118		19.3		

CONCULSION:

Apart from all the consideration of past journals we have consider that Retrofitting of RCBeams with ferrocement bonding with epoxy resin and partially replacement of silica fume will gives the more strength than conventional beam.

