

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-2, 2019

135

DATA DEDUPLICATION TECHNIQUE USING

CONTAINER FOR STORING BIG DATA IN CLOUD
A.Thomas Mary Sheeba

Assistant Professor, Department of IT
Dr. Sivanthi Aditanar College of Engineering

Sheeba_it2005@yahoo.com

Abstract
The amount of data generated by the system
is very large and the storage space required
to store these data is very high. In this paper
a container based data deduplication
technique is proposed. The proposed
technique chunks the data into fixed sized
blocks. After chunking the data into fixed
sized blocks, hash values are generated using
MD5 algorithm. Then MapReduce
technique is used to check whether duplicates
are found or not. To check for duplicates the
already generated hash values are stored in
the container and is checked with the newly
generated hash values. If duplicates are
found then no need to store the data
otherwise the datas are stored into the Cloud.
Keywords: Big Data; Chunking; Container;
Deduplication.

I. INTRODUCTION
The International Data Corporation has
predicted that the amount of data generated will
reach 40 trillion gigabytes in 2020. The big
challenging task today is how these huge
amount of data are stored for future purpose.
These stored data may contain duplicates. The
large amount of data are processed within
seconds in big companies. Data deduplication
is a technique to find the redundant data. In the
perspective of Deduplication architecture, there
are two stratergies. They are 1)Target based
Deduplication and 2)Source based
Deduplication. In target based deduplication,
the users are unaware of the deduplication
technique. The users just upload the data and
the server checks for duplication. In Source
based deduplication, the users are aware of the
deduplication technique and they generate the
hash value and the same is send to the server.

The server checks for redundancy using the
hash value. The data may be in unstructured
form without any format or media. This
unstructured data may contain duplicate data
used at multiple times so to identify duplicate
data and create unstructured data into structured
data format is a challenging task. To handle this
kind of challenging task various authors
provided different kind of mechanism like
whole file chunking, content defined chunking,
and fixed size chunking [1]. In whole file
chunking, whole file is taken as chunk and
produces hash values to find Duplicate data.
Data may be duplicate within file if whole file
chunking is used then duplication can be
detected within files. And to produce hash
values for whole file it may take more
computation time. On the other hand, content
defined chunking is based on variable size
chunking. In this Content defined chunking file
is divided into the blocks of the data and then
hash values are produced from these blocks to
detect duplication id the blocks. To find
identical chunks or blocks in content defined
chunking mechanism is very difficult task [2].
In Fixed size chunking mechanism, file is
divided into fixed size chunks and then
produces hashes to find fixed size duplicate
chunks. In fixed size chunking there are fixed
size chunks are created but when there is some
changes in data then there may be a problem
boundary shift problem [3][4].

DATA DEDUPLICATION STRATEGY
Data de-duplication technology to identify
duplicate data, eliminate redundancy and
reduce the need to transfer or store the data in
the overall capacity [7][8]. Duplication to detect
duplicate data elements, to judge a file, block or
bit it and another file, block or bit the same.

mailto:Sheeba_it2005@yahoo.com

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-2, 2019

136

Data de-duplication technology to use
mathematics for each data element, "hash"
algorithms to deal with, And get a unique code
called a hash authentication number .. Each
number is compiled into a list, this list is often
referred to as hash index. At present mainly the
file level, block-level and byte-level deletion
strategy, they can be optimized for storage
capacity.
A. File-level data deduplication strategy
File-level deduplication is often referred to as
Single Instance Storage (SIS)[9], check the
index back up or archive files need the
attributes stored in the file with the comparison.
If not the same file, it will store and update the
index; Otherwise, the only deposit pointer to an
existing file. Therefore, the same file saved only
one instance, and then copy all the “stub”
alternative, while the “stub” pointing to the
original file.
B. Block-level data deduplication technology
Block-level data deduplication technology[1 0]
[1 1] to data
stream divided into blocks, check the data
block, and determine whether it met the same
data before the block (usually on the
implementation of the hash algorithm for each
data block to form a digital signature or unique
identifier) .. If the block is unique and was
written to disk, its identifier is also stored in the
index; Otherwise, the only deposit pointer to
store the same data block's original location.
This method pointer with a small-capacity
alternative to the duplication of data blocks,
rather than storing duplicate data blocks again,
thus saving disk storage space. Hash algorithm
used to judge duplicate data, may lead to
conflict between the hash error. MD5, SHA-I
hash algorithm, etc. are checked against the data
blocks to form a unique code. Although there
are potential conflicts and hash data corruption,
but were less likely. To overcome these kinds of
drawbacks a container based technique for data
deduplication has been presented in this paper.
The paper is organized in five sections. In
section I introduction has been presented, in
section II related work has been discussed, in
section III proposed algorithms and system
architecture has been presented and section IV
covers results and analysis is presented.

II. RELATED WORK
Tang and Won [5] developed a prototype
system that is content based file chunking
which consist of two subsystems: one is CPU
chunking subsystem and other is GPGPU
subsystem. This system will decide which
subsystem would use chunks.
Manogar and Abirami [6] analyzed different de-
duplication techniques and compared these
techniques and concluded that variable size data
de-duplication is very efficient from other
techniques.
Lin et al. [7] developed a data reorganize
method that is ReDedup it works to address data
fragmentation problem and reallocate files and
places them on disk.
Wang et al. [8] explained about clustering
architecture with several storage nodes for data
de-duplication. In this architecture, there was a
removal data redundancy at file-level and
chunk-level and examine for duplicate chunks
in all nodes at the same time.
Yu-xuan et al. [9] developed a cluster de-
duplication system AR-Dedup to reach high
data de-duplication rate and low communication
overhead and to maintain load balancing. In this
system an application-aware method is also
used in the de-duplication. In AR-Dedup there
were routing was used in the cluster de-
duplication.

III. PROPOSED WORK
This section presents the proposed architecture

with simple steps.
1. Algorithm for Chunking

• The data is given as input
• The size of the chunk is initialized
• Bytes from the data are extracted
• Output the bytes
• Chunks are created from the input data

based on the
above procedure.

2. MD5 Algorithm
• Give the input data
• The input data are divided into blocks
• Eight rounds are used to process the

blocks
• MD5 digest is produced after

performing eight rounds.

C. Description of proposed work
In the proposed algorithm the data is divided
into different chunks. To perform this task

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-2, 2019

137

we applied fixed size chunking algorithm. In
fixed chunking algorithm initialize the
number of chunks and size of chunks is to
be generated for example size of 32 MB. It
indicates file is divided into various chunks
of size 32MB. These chunks are used to find
duplicate content. After creating chunks
using fixed size chunking apply MD5
algorithm to generate hash values of these
chunks. These hash values are secret values
so that data in chunks cannot be accessed by
any other person that may violates security
of system. Now these hash values are
pushed into the clod for storage. Now
initialize different containers which are used
to store hash value. Hash values are stored
in corresponding containers. Now run the
MapReduce programming model to
distinguish duplicates hashes of the files.
When duplicate hashes are detected then
remove the duplicate files from the data and
store only unique data into cloud. When new
data is stored into cloud then firstly use the
fixed size chunking algorithm to create
chunks. Then generate hashes from the
chunks. And then transfer these chunks for
the verification in cloud. Now apply
MapReduce model to detect the hashes are
duplicate or not. If hashes are detected as
duplicate then do not store the data in cloud
otherwise stores into containers. This will
removes duplicated data and reduces storage
capacity that was increased due to duplicate
content. Fig 1 shows the architecture of
proposed system.

Fig. 1. Proposed work Architecture

IV. RESULTS AND ANALYSIS
The Proposed work is implemented on a
computer with configuration Intel i3 CPU with
4.00 GB memory on 32bit OS in Windows. To
implement the proposed work the dataset is
collected from online resources like e-books
and then by using Matlab fixed size chunking
algorithm and MD5 hashing algorithm is
implemented. The duplicate hash values are
detected using the Map Reduce model. If
duplicates are found, then the datas are not
stored in the cloud and if duplicates are not
found then the datas are stored in the cloud.
Then the results are compared with the existing
techniques.
A. Dataset Used
To implement the proposed work the dataset
used is collected from online resources like e-
books. Different versions of the same book is
taken and compared with the existing technique.
B. Performance metrics
The following metrics are analysed for efficient
deduplication.
 Data size after deduplication

This is the size of data reduced after
deduplication

 Time to chunk the data
This is the time taken to produce chunks

 Time to generate hash value
This is the time taken to generate hash
value using the proposed algorithm

 Deduplication ratio
This is the ratio of deduplication which
is nothing but the data after
deduplication/ data before deduplication.
Ratio of Deduplication=(Size)a/(Size)b
Where (Size)a=Data after Deduplication
 (Size)b=Data before Deduplication

Table 1: Container Based Deduplication
Technique Results

Technique Data
before
deduplicati
on

Data after
deduplication
(GB)

Dedupli
cation
Ratio

Fixed 3.8 GB 2.7 0.71
Container 2.1 0.55

Fixed 2.4 GB 1.6 0.66
Container 1.1 0.45

Fixed 1.2 GB 0.75 0.62
Container 0.7 0.58

Input Data

Chunk1

Chunk2

Chunk3

Chunk4

Chunk n

Hash Value
Generation

using MD5 and
MapReduce is

applied

Container
Storage

No
Duplicate,
Store the

data

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-2, 2019

138

The above table shows the
deduplication ratio of data of varying sizes.
The proposed method is compared with the
existing methods.

Fig 2: Data before deduplication Vs Data
after Deduplication.

V. CONCLUSION
In big data storage data is too large to store in
physical storage devices. So this is an big
challenging task. To solve this problem we store
the data in the cloud using deduplication
technique. This paper presents a container based
technique to avoid the redundant copies of data.
In proposed technique different containers are
used to store data and when same data is
accessed by map reduce i.e. already stored in
container then that data will be discarded so this
technique definitely increases efficiency of big
data storage. Results shows that in proposed
mechanism deduplication ratio is high, data size
reduction is high hash time and chunk time is
low as compare to existing fixed size chunking
technique. In future we will continue working
on it and refine results with low computation
time also we propose new mechanism in which
all modules are combined like chunking,
deduplication and hashing that can find more
duplicate content and remove them in proper
manner with less time duration.

REFERENCES

[1] Qinlu He, Zhanhuai Li and Xiao Zhang,

“Data Deduplication Techniques”, 2010
International Conference on Future
formation Technology and Management
Engineering, IEEE 2010, pp. 430-433.

[2] Won, Lim and Min, “MUCH: Multithreaded

Content-Based File Chunking”. IEEE

Transactions on Computers, IEEE 2015, pp.
1-6.

[3] Wen Xia, Hong Jiang, Dan Feng and Lei
Tian, “DARE: A Deduplication-Aware
Resemblance Detection and Elimination
Scheme for Data Reduction with Low
Overheads”, IEEE Transactions on
Computers, IEEE 2015, pp.1-14.

[4] Yukun Zhou, Dan Feng, Wen Xia, Min
Fu, Fangting Huang,

[5] Yucheng Zhang and Chunguang Li,
“SecDep: A User-Aware

[6] Efficient Fine-Grained Secure
 Deduplication Scheme with

[7] Multi-Level Key Management”, IEEE
2015, pp. 1-4.

[8] Zhi Tang and Youjip Won,
“Multithread Content Based File
Chunking System in CPU-GPGPU
Heterogeneous Architecture”, 2011 First
International Conference on Data
Compression, Communications and
Processing, IEEE 2011, pp. 58-64.

[9] E. Manogar and S. Abirami, “A Study
on Data Deduplication Techniques for
Optimized Storage”, 2014 Sixth
International Conference on Advanced
Computing(lCoAC), IEEE 2014, pp.
161-166.

[10] Bin Lin, Shanshan Li, Xiangke Liao
and Jing Zhang, “ReDedup: Data
Reallocation for Reading Performance
Optimization in Deduplication System”,
2013 International Conference on
Advanced Cloud and Big Data, IEEE,
pp.117-124.

[11] Guohua Wang, Yuelong Zhao,
Xiaoling Xie, and Lin Liu, “Research on
a clustering data de-duplication
mechanism based on Bloom Filter”,
IEEE 2010, pp. 1-5.

[12] XING Yu-xuan, XIAO Nong, LIU
Fang, SUN Zhen and HE Wan-hui,
“AR-Dedupe:

[13] An Efficient Deduplication
Approach for Cluster Deduplication
System”, J. Shanghai Jiaotong Univ.
(Sci.), 2015, pp. 76-81.

[14] Kun Gao and Xuemin Mao, “
Research on massive tile data
management based on Hadoop”, 2016
2nd International Conference on

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-2, 2019

139

Information Management (ICIM), IEEE
2016, pp. 16-20.

[15] Apache Hadoop, http://hadoop.
apache.org, Acessed on 11-June-2016.

[16] Destor, https://github.com /fomy/
destor, Accessed on 15-June-2016.

[17] College Scorecard, https://
catalog.data.gov/dataset/college-
scorecard, Accessed on 8-June-2016.

[18] ZCTA, https://catalog.data.gov
/dataset/tiger-line-shapefile-2015-2010-

nation-u-s-2010-census-5-digit-zip-
code-tabulation-area-zcta5-na, Accessed
on 8-June-2016.

[19] Lu, Jin and Du, “Frequency Based
Chunking for Data De-Duplication”,
2010 18th Annual IEEE/ACM
International Symposium on Modeling,
Analysis and Simulation of Computer
and Telecommunication Systems, IEEE
2010, pp. 1-5

