

# COMPARATIVE STUDY OF PHOTOLUMINESCENCE OF Mn<sup>2+</sup> IN A MIXED ALKALINE CHLOROSULPHATE NANOMATERIAL KMgSO<sub>4</sub>Cl USING DIFFERENT ROUTE METHOD

S.R.Choubey\*<sup>a</sup>, L.P.Damodare<sup>b</sup> and S.C.Gedam<sup>c</sup>

a PGTD,Department of Physics,VMV/JMT/JJP College, Nagpur 440008, India
b PGTD,Department of Physics,VMV/JMT/JJP College, Nagpur 440008, India
c Department of Physics, K. Z. S. College, Kalmeshwar, District Nagpur, India

## ABSTRACT

То prepare KMgSO<sub>4</sub>Cl different methods have been attempted such as wet chemical synthesis (WCS) and solid state diffusion (SSD) methods. XRDs of the sample prepared by these two methods have been placed at the same position, phase and matched well with standard KMgSO<sub>4</sub>Cl: Mn data. showed improved photoluminescence (PL) which may be used as efficient lamp phosphors. Photoluminescence of  $Mn^{2+}$ KMgSO<sub>4</sub>Cl: synthesized bv WCS and SSD route is placed in yellow region (576 nm) where as orange region shifting (593 nm) is observed for an excitation of 380 nm. Shifting of peak positions and intensity may be due to Nano particle size of the KMgSO<sub>4</sub>Cl host. Xrav diffraction and PL characterization of phosphors has been reported in this sample. All the synthesis routes are easy, worked at low temperature, low cost and least hazardous and eco friendly.

Keywords: Wet Chemical Synthesis, Solid State Diffusion, X-Ray Diffraction, Photoluminescence, Emission Spectra

## 1. Introduction

In view to use alkaline Chlorine halides based phosphors used in lamp industries; we have synthesized and characterized halophosphors which are not attempted much more elsewhere in the literature. Our research focus is always on the preparation of the new halo- phosphors. In the same series of the preparation of halophosphors, we have now made attention on KMgSO<sub>4</sub>Cl host. The phosphors are synthesized and characterized by doping transition metals manganese (Mn<sup>2+</sup>). Phosphors synthesized by using transition metals are essential for its low cost, less hazardous and being eco friendly. It has wide applications in scintillation , lighting, imaging, and display devices. Transition metal Mn<sup>2+</sup> gives emission in the range of 500 to 700 nm depending on the host, which are mostly used in fluorescent lamps and as electroluminescent phosphor as per J. Ferguson, H.J. Guggenheim [1]; M.D. Shinn, J.C. Windschleif; D.K. Sardar<sup>[2]</sup> and G. U Caldiño<sup>[3]</sup>. We have reported KZnSO4Cl, KMgSO4F, KCaSO4Cl. NaMgSO4Cl, KCaSO4Cl. inorganic materials as good phosphors by doping transition metals as per A. Poddar, S.C. Gedam, S.J. Dhoble[4], S.C. Gedam, S.J. Dhoble, R.B. Pode [5] and P.S. Thakre, S.C. Gedam, S.J. Dhoble, R.G. Atram However, we could not find any [6]. information luminescence on in KMgSO<sub>4</sub>Cl compound after doping with transition metals. In this paper special been attention has paid to photoluminescence study of manganese doped in chloride based material

KMgSO<sub>4</sub>Cl by synthesizing it by different routes. We have successfully used the technique in doping Mn<sup>2+</sup> in KMgSO<sub>4</sub>Cl host which could be interesting for several reasons.

## 2. Experimental

In this study KMgSO<sub>4</sub>Cl is synthesized by WCS and SSD routes and incorporation of Mn have been done successfully without using any inert atmosphere. The details of synthesis routes are explained as follows-

For wet chemical synthesis (WCS) route MgSO<sub>4</sub> and KCl of AR grade were taken in a stoichiometric ratio and they are dissolved separately in double distilled de-ionized water and mixed together, resulting in a solution of KMgSO<sub>4</sub>Cl. Then water-soluble sulphate salt of manganese was added to obtain KMgSO<sub>4</sub>Cl:Mn<sup>2+</sup>. The solution was evaporated at 80 °C. Compounds are formed by this route are hygroscopic and catch moisture if left in the open, so they are heated at 350 °C. The resultant polycrystalline mass was crushed to fine particle in a crucible. The powder was used in further study.

For solid state diffusion (SSD) route same amount of material is taken then crushed for half an hour and heated for an hour at 100°C then temperature has been increased in steps up to 350 °C and heated for 12 hour in furnace and cooled slowly. All the compounds reacted by the following reaction:

## $MgSO_4 + KCl - KMgSO_4Cl$ $KMgSO_4Cl + Mn2 (SO4). 2 H2O$

## - KMgSO<sub>4</sub>Cl:Mn<sup>2+</sup>

of methods) Formation (both compounds were confirmed by taking x-ray diffraction (XRD) and reported earlier [11] Photoluminescence (PL) spectra were recorded in the range 220-700 a Fluorescence nm on spectrometer (Shimatzu RF-5301) with spectral slit widths of 1.5 nm. Samples were also found to be stable against UV irradiation that was used for the PL measurements.

## **3. Results and Discussion:**

3.1. Photoluminescence (PL) study of  $Mn^2$  + emission in KMgSO<sub>4</sub>Cl:-

Mn<sup>2+</sup>ions have been widely investigated in the luminescent materials, for the electrical, magnetic and mechanical properties as per C.C. Diao, C.F. Yang (2010) [12]. The typical luminescence of  $Mn^{2+}$  $(3d^5)$ is  $4T^1$ the 6A1 attributed to transitions. From the Tanabe-Sugano diagram, the emission transition of  $4_{T_{1g}(G)} - 6_{A_{1g}(G) \text{ in } Mn^2 + \text{ ions}}$ depends on the crystal field strength of the substituted sites, C.C. Diao, C.F. Yang (2010) [12]. For example, the  $Mn^{2+}$  in tetrahedral coordination usually gives a green or yellow emission, whereas Mn<sup>2</sup> + with octahedral coordination gives a red emission. a wide usage of  $Mn^2$  + This gives doped compounds for fluorescent lamps, cathode ray tubes and white light-emitting diodes (LEDs). As described in the Sugano-Tanabe diagram the ground state of  $Mn^2$  + has six manifold spin degeneracy[13]. However, no excited states of  $Mn^{2+}$ spin degeneracy. As a sextet have result, all the absorption transitions to the excited state are spin-forbidden with low transition probabilities.

Fig. 1 shows the excitation spectra of  $KMgSO_4Cl:-Mn^{2+}0.02 \text{ mol }\%$  by a) WCS b) SSD route The excitation peaks are observed at 330, 347 and 383 nm when it is synthesized by WCS and SSD route. In the excitation spectrum of  $Mn^2 +$ , the peaks centred at 330, 347 and 383 nm are assigned to the transitions from  $^{6}A_1(6 \text{ S})$  to 4E(4D),  $^{4}T_2(4D)$  and  $^{4}A_1(4 \text{ G})$ ,  $^{4}E(4 \text{ G})$  levels, respectively.

Figs. 2–3 shows emission spectra of KMgSO<sub>4</sub>Cl:-Mn<sup>2+</sup> halophosphor for different concentrations of Mn<sup>2+</sup> (0.02 mol%, 0.05 mol% 0.1 mol%) by two different synthesis routes respectively. The emission spectrum consists of single band in the yellow or orange range with maximum peak at about 576 nm (yellow, for WCS and SSD route). The Mn<sup>2</sup> + ions exhibit

#### INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

yellow luminescence if emitting level is  $4T_{2g}$  (4 G), while orange when  $4T_{1g}(4 \text{ G})$  level is involved. Shifting peak position (from yellow to of orange- red region) and intensity of Mn in KMgSO<sub>4</sub>Cl matrix may be due to nano particle size. The emission band centered at 576 nm corresponds the  ${}^{4}T_{1}(4 \text{ G})$  –  $6_{A1(6 S)}$ to transition of  $Mn^2$  + while the emission band centered at 593 nm corresponds to the  ${}^{4}T_{1}(4 \text{ G})$  –  $6_{A1(6 S)} (4_{T1g} - 6_{A1g})$  transition of  $Mn^{2+}$  (Fig. 4).Since these transitions spin and parity forbidden, both are the excitation and emission intensities

relatively weak. The nature of are emission spectra does not vary with Mn<sup>2+</sup> concentration but the the luminescence intensity changes by changing concentration and the synthesis route. It has been found that the emission intensity of Mn<sup>2+</sup> increases first when Mn concentration increases. The change in PL intensity of the emission peak may be due to a higher concentration of defects that generates non radiative states within the forbidden gap, which is consistent with the previous work reported for other phosphors.  $Mg^{2+}$  is well suited for  $Mn^{2+}$  doping due to the matching ion sizes and charge configurations.

Comparison of PL in KMgSO<sub>4</sub>Cl: Mn<sup>2+</sup> synthesized by different routes.

| Phosphor     | Synthesis<br>Route | λ excitation<br>(nm) | λ emission<br>(nm) | Max. PL emis-<br>sion Intensity<br>(a. u.) |
|--------------|--------------------|----------------------|--------------------|--------------------------------------------|
| KMgSO₄Cl: Mn | <sup>2+</sup> WC   | 383                  | 576                | 42                                         |
|              | SSD                | 383                  | 576                | 65                                         |

## 4. Conclusion:

The following conclusions have been made by doping successfully transition metal ions like Mn in KMgSO<sub>4</sub>Cl.The samples KMgSO<sub>4</sub>Cl:-Mn<sup>2+</sup> are prepared by simple WCS and SSD without using inert atmosphere. PL emission spectra of the of the phosphors of  $Mn^{2}$  + emission at 576 nm (yellow region) or at 593 nm (orange region) is observed. Photoluminescence studies KMgSO<sub>4</sub>Cl:-Mn<sup>2+</sup>suitable. The concentration quenching takes at 0.1 mol% of Mn<sup>2+</sup> in KMgSO<sub>4</sub>Cl. The notable differences observed due to the effect of nanosize particle materials. KMgSO<sub>4</sub>Cl:-Mn<sup>2+</sup>gives emission in UV region; this may arise its potential applications for the realization of tunable lasers and in other optical devices while KMgSO<sub>4</sub>Cl:-Mn<sup>2+</sup>might find a possible application in yellow LEDs for lamp industries.

#### References

[1] J. Ferguson, H.J. Guggenheim, Electron-transfer states of pairs of unlike transition-metal ions in perovsskite fluorides, Phys. Rev. B 1 (1970) 4223–4229.

[2] M.D. Shinn, J.C. Windschleif, D.K. Sardar, W.A. Sibley, Optical transitions of Er3 + ions in RbMgF3 and RbMgF3: mn, Phys. Rev. B 26 (1982) 2371–2376.

[3] G. U Caldiño, Energy transfer in CaF2 doped with Ce3b, Eu2b and Mn2b ions, J.

#### INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

Phys. : Condens. Matter 15 (2003) 7127–7131. [4] A. Poddar, S.C. Gedam, S.J. Dhoble, Photoluminescence study of KMgSO4F: x (X<sup>1</sup>/<sub>4</sub> Cub or Dy3b or Eu3b) halosulphate phosphors., J. Lumin. 143 (2013) 579–584.

[5] S.C. Gedam, S.J. Dhoble, R.B. Pode, 5D0-7F1 and 5D0-7F2 transition in halosulphates for mercury-free lamps, J. Lumin. 132 (2012) 2693–2696.

[6] P.S. Thakre, S.C. Gedam, S.J. Dhoble, R.G. Atram, Luminescence of KCaSO4Cl: x, Y (X  $\frac{1}{4}$  Eu or Ce; Y $\frac{1}{4}$ Dy or Mn) halosulfate material, J. Lumin. 131 (2011)1612–1616.

[7] S.J. Dhoble, S.C. Gedam, I.M. Nagpure, S.V. Godbole, M.K. Bhide, Photoluminescence and thermoluminescence characteristics KXSO4Cl: eu (X<sup>1</sup>/<sub>4</sub>Zn or Mg) halosulphate phosphors, J. Phys. D: Appl. Phys. 40 (2007) 6039–6044.

[8] S.C. Gedam, S.J. Dhoble, S.V. Moharil,

Eu2b and Ce3b emission in sulphate based phosphors, J. Lumin. 128 (2008) 1–6. [9] S.C. Gedam, S.J. Dhoble, S.V. Moharil,

Synthesis and effect of Ce3b co-doping on photoluminescence characteristics of KZnSO4Cl: m (M <sup>1</sup>/<sub>4</sub> Dy3b or Mn2b) new phosphors, J. Lumin. 121 (2006) 450–454.

[10] S.C. Gedam, S.J. Dhoble, S.V. Moharil, Dy3 $\beta$  and Mn2 $\beta$  emission in KMgSO<sub>4</sub>Cl, J. Lumin 124 (2007) 120–126.

[11] S.C. Gedam, S.J. Dhoble, S.V. Moharil, Dy3b and Mn2b emission in KMgSO4Cl phosphor, J. Lumin 124 (2007) 120–126

[12] C.C. Diao, C.F. Yang, Synthesis of high efficiency Zn2SiO4:mn2b green phosphors using nano-particles, Ceram. Int. 36 (2010) 1653–1657.

[13] S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition–Metal ions in Crystals, Academic Press, New York, 1970.



Fig 1. Excitation spectrum of  $KMgSO_4Cl:Mn^{2+}$  Mn 0.02 mol% by (a) WCS (b) SSD (c) CS



Fig 2. Excitation spectrum of KMgSO<sub>4</sub>Cl: Mn<sup>2+</sup> Mn 0.05 mol% by (a) WCS (b) SSD





Fig 3. PL emision spectra  $KMgSO_4Cl: Mn^{2+}$  for An excitation of 383 nm synthesized by SSD route

Fig 4. Excitation spectrum of  $KMgSO_4Cl$ :  $Mn^{2+:}$  Mn 0.05 mol% by (a) WCS (b) SSD



Fig. 5: Energy level diagram showing the states involved in the luminescence process and the transition probabilities in  $Mn^{2+}$