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Abstract 
This paper is concerned with the reliable  
for a class of uncertain neutral system with 
time- varying delays. A new Lyapunov 
functional is constructed to obtain sufficient 
conditions under which the uncertain neutral 
system is  with disturbance attenuation 
level γ > 0 for all admissible uncertainties.  
More precisely, Schur complement and 
Jenson integral inequality is are utilized to 
substantially simplify the derivation of the 
main result. Finally, a numerical example 
with simulation result is provided to show the 
effectiveness of the obtained result. 
Index Terms: Reliable  control, uncertain 
neutral system, parameter uncertainties. 
Notations: Throughout this paper, 
Superscripts " " and " " stand for matrix 
transposition and matrix inverse respectively. 

	denotes the -dimensional Euclidean 
space.  denotes the set of positive integers. 

	  denotes the set of all  real matrices. 
	(respectively  means that   is 

positive definite (respectively negative 
definite).  and 0 represent identity matrix 
and zero matrix with compatible dimension. * 
denotes the symmetric elements of the 
symmetric matrix. 
 

I. INTRODUCTION 
 During the past few decades, much attention has 
been paid to the research on the problem of time 
delay, which frequently occurs in various 
practical engineering systems, such as T-S fuzzy 
system, switched linear system, Markovian jump 
system and networked control system. The 
existence of time delay would deteriorate the 
performance of system or even be the important 
source of instability of systems with time-
varying delay is frequently has attracted 
remarkable attention of researchers, see for 
instance in. The stability analysis criteria for 
time-delay systems can be classified into two 
types: delay-independent ones and delay-
dependent ones. 

 
II. PROBLEM FORMULATION AND PRELIMINARIES 

Consider an uncertain neutral system with time varying delays in the following form 
̅ ̅ 	

	 	 ,
																															 1  

where ∈ 	 	is the state vector. ̅ ∆ , ∆ , ̅ ∆ , where 
, , 	, ∈   and ∈  are known real constant matrices with appropriate dimensions. 

 and  are time-varying delays satisfying 
0 ,	0 ,  and ,																																													 2  

where 	, , , , !and  are positive constants. The parameter uncertainties  
∆ , ∆ 	and ∆  are time-varying matrices with appropriate dimensions and are assumed 
to be norm bounded and are defined as  
∆ 		∆ 		∆ 	 	 		 		 ,																																																																																					 3                     

where , 	, 	,and 	  are known constant real matrices with appropriate dimensions.  is 
the uncertain matrix functions which satisfies  

	 	 .																																																																																																																																											 4  
The control input can be described as  

	 	 	 ,																																																																																																																							 5  
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where  is the feedback gain matrix and  is fault matrix. 
Finally, by combining (1) and (5) we obtain the closed-loop uncertain neural system with time 
varying delays in the following form  

̅ ̅ 	 	 	

	 	 ,
																								 6 	                  

Definition 2.1:  [27] System 6  is said to be robustly stable with disturbance attenuation  if for all 
∈ 0,∞ , the response  under zero initial conditions satisfies 

 	 	 	 . 
Lemma 2.2:  [20] Let ,  and  be the real matrices of appropriate dimensions with  
satisfying 	 . Then we have the following inequality holds: 
 for 0, 	 	 	 	 	 	 	 	 	 . 
Lemma 2.3:  [20] Given constant matrices Ξ , Ξ 	and	Ξ  appropriate dimensions, where Ξ

Ξ 0 and Ξ Ξ 0 then Ξ Ξ 	Ξ 	Ξ 0 if and only if 
Ξ Ξ
∗ Ξ

0. 

Lemma 24:  [12] For any constant matrices  0,	any scalars  and  with , and a vector 
function : , 	⇢ 	  such that the integrals concerned are all defined, then the following 
holds: 

	 	 	 	 	  

 
III. MAIN RESULTS 

 The main aim of this section is to obtain the conditions for the existence of a stabilizing 
state feedback reliable  control law such that the resulting closed-loop system is robustly stable 
with given disturbance attenuation level γ > 0. In order to discuss robust stability of 6  which has 
parameter uncertainties, first we consider the case in which the matrices are fixed, i.e., when 
∆ 	0, ∆ 	0	and	∆ 	 	0. For this, we consider the nominal form of system as 
follows: 

	 	 	 	

	 	 ,
                          (7)     

   
Theorem 3.1:  For given positive scalars , , , ,  and  and the known actuator fault 
matrix H there exists a reliable controller 5  such that the nominal neutral system	 7  satisfies  
performance index γ if there exists symmetric matrices 	 	0, 	 	0, 	 	1, 2, … , 9, 	
	0, 	 	0, 	 	1, 2, 3, 4 with appropriate dimensions and any matrices X and Y such that the 
following matrix inequality holds: Ω 0,	 where 
Ω , 2 2 2 , Ω , , 

	Ω ,
2

, Ω ,
2

, Ω , 	 2 , Ω ,
2

, 

 Ω , 	 , Ω , 2 , Ω , , Ω , , Ω , 1 , 

	Ω , 	 	 , Ω , 1 , Ω , 2 2
2 , Ω , 	 ̅	 , 

	Ω , 		 , Ω , 1 , Ω , 2
, Ω , 2

, 

Ω ,
2 1

, Ω ,
2 1

, Ω ,
2 1

, 

 

Ω ,
2 1

, Ω ,
2 1

, Ω , , Ω , ,	 

Ω , , Ω , , where	 	 , 	 , 1,2,3… ,9	 
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	 , 	 , 1,2,3,4.	 
Proof:  Let us define the Lyapunov – Krasovskii function for the system 7   

,																																																																																																																										 8  

 where 
	 , 

 

	 	 	 	 	 	

	 	 	 	
	

	 	

		

	 	 	 	
		

	 	
	

 

 

	 	 	 	 	 	  

																							 	 	 	 	 	 	  

	 	 	 	 	 	 	 	
		

 

 

																		 	 	 	 	 	 	 	 	
		

 

 
 
Calculating the derivatives  along the trajectories of the system 7 , we have 

2	 	 	 ,																																																																																																																														 9  
	 ! 	

	 1
1
1 	

																																																																																														 10  
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!

	 	 	 !

	 	 	 	 	 	

	 	 	

		

																																	 11  

 

2
	 	 	 	 	 	

2
 

																			 	 	 	 	 	 	 	 	 	

															 	 	 	 	 																																	 12   

By applying Jenson inequality Lemma 2.4 for the integral terms in 11 , 12  and the time delay 
interval, the integration in the above equations can be written as  

	 	

!

	
1

! !

																																																											 13  

	 	

1
	 	 	 																																				 14  

	 	

	
1

	 																																																										 15 	 

 

	 	 	

		

	
1

	

		 		

																																					 16  
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2
	 	 	 	 																				 17  

 

	 	 	

	
2

	
	 	 	 	 18 		 

 

	 	 	 	

	
2
	 	 	 	 																							 19  

	 	 	

	
2

	 	 	 		 20  

 
At the same time, for any appropriate dimensional non-singular matrix  and a scalar 0, we 
have 2	 	 	 	 	 	 	 0 
It follows from 9 20  that 
 

2	 	 	 ! 	

	 1
1
1 	

	 	
	 	 	 ! 	 	

2
	 	

2
	

2
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2

1

! !

1
	 	 	

1
	

1
	

		 		
2
	 	 	 	 	

2
	

	 	 	 	

2
	 	 	 	

2
	 	 	 																																						 21  

To discuss the 	performance of system 7 , we introduce the following relation: 

	

	 	 																																																																																																				 22  
It follows from 21  using Definition 2.1 and Lemma 2.2, by the zero initial condition, we have 
0 0 and ∞ 0, and we have  

	 	 	

	Π 	 	 																																							 23  

where, 
    	 				 					 						 							 		 

					 					 						 								  

!

	 			 			 			 			

		

			 

and Π Ω 0 
where, Ω , 2 2 2 , 	Ω , ,	 

	Ω ,
2

, 	Ω ,
2

, 	Ω , 2 , 	Ω ,
2

, 

	Ω , , 	Ω , 2 , 	Ω ,
2

, 	Ω , , 	Ω , 1 , 

	Ω , , 	Ω , 1 , 	Ω , 2
2 ! 2

, 	Ω , , 

	Ω , , 	Ω , 1 	, 	Ω , 2
, 	Ω , 2 , 

	Ω , 	
2 1

, 	Ω , 	
2 1

, 	Ω , 	
2 1

!
,	 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)       

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-7, 2018 

97 

	Ω , 	
2 1

, 	Ω , 	 , 	Ω , , 	Ω , , 	Ω , .	 

To complete the proof , pre and post multiplying 19  by , … , , 	and by letting  
	 , 	 , 1,2, … ,9, 	 , 	 , 1,2,3,4 

The following matrix holds: 
 Ω 0 
where, 
Ω , 2 2 2 , Ω , , 

Ω ,
2

, Ω ,
2

, Ω , 	 2 , 	Ω ,
2

, 

	Ω , 	 , 	Ω , 2 , 	Ω ,
2

, 	Ω , , 	Ω , 1 , 

 	Ω , 	 	 , Ω , 1 , Ω , 2 , Ω , 	 ̅	 , 

			Ω , 		 , Ω , 1 , Ω , 2
, Ω , 2

, 

Ω ,
2 1

, Ω ,
2 1

, Ω ,
2 1

, 

 

Ω ,
2 1

, Ω ,
2 1

, Ω , , Ω , ,	 

	Ω , , Ω , . 
 
 
 
Theorem 3.2:  For given positive scalars , , , ,  and  and the known actuator fault 
matrix  and , ,  and  are known constant real matrices with appropriate dimensions there 
exists a reliable controller (5) such that the nominal neutral system 7  satisfies  performance 
index γ if there exists symmetric matrices 	 	0, 	 	0, 	 	1, 2, … , 9, 	 	0, 	 	0, 	
	1, 2, 3, 4 with appropriate dimensions and any matrices X and Y such that the following matrix 
inequality holds: 	  

Ψ
Ω , Ω Ω

∗ 0
∗ ∗

	 0 

where Ω 0 0 , Ω 0 0  
In this case, state feedback control gain in 5  is given by 	 	 	  and the other parameters are 
defined as in Theorem 3.1. 
 
Proof: The proof of this theorem is immediately follows from Theorem 3.1 by replacing the 
matrices ,  and  with 	∆ 	 , 	∆ 	  and 	∆ 	  respectively. 
Further, by applying Lemma 2.1 and Lemma 2.3 we can obtain 23 . This implies that the  
performance can be ensured if the matrix inequality in Theorem 3.2 hold. The proof is completed.  
    

IV. NUMERICAL SIMULATION 
In this section, we provide a simulation example to illustrate the effectiveness and 

applicability of the proposed method. 
Consider an uncertain neutral system with time - varying delays with the following matrices 

1 0
3 2

, 	 0.55 0.7
0.25 0.3

, 0.02 0.1
0.1 0

	 

1.4
0

, 0.05 0 , 	 0.1 0 , 0.3 
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The uncertain parameters are given as follows 
0.01 0
0 0

, 	 0.01 0
0 0

, 0.01 0
0 0

, 0.01 0
0 0

 

The disturbance attenuation level is specified to be 	0.9 and we take 1.3, 	 2.6,
1.2, 2.9, 	 0.4, 	 0.5.  Then by solving the matrix inequality in Theorem 3.2 using 
Matlab LMI toolbox, the gain matrix of the state feed back 	controller can be obtained as 

7.9727 3.7966  

 
Fig. 1: 	 performance of closed-loop system. 

 

 
Fig. 2: control response of uncertain system 

 
Fig. 3: output response of uncertain system. 

 
Simulation results for state response of neutral 
system 6  for 	performance is shown in Fig 

1. Further, the corresponding controller 
performance is shown in Fig 2. From the 
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simulation results, it is easy to see that the 
obtained controller design is suitable to make 
sure the state trajectories are converging well. 
 

V. CONCLUSION 
 The problems of stability and dissipative 
analysis of NCCS have been investigated. In this 
paper for a time varying random delay technique, 
some novel Lyapunov-Krasovskii functional 
candidates were introduced for admissibility and 
dissipative of NCCS. The derived results are 
tabulated. At the end, numerical examples were 
given to demonstrate the modeling and guarantee 
the effectiveness of the developed approaches. 
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