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Abstract 
In recent years, finite fields arithmetic over 
GF(2m) has gained very high importance due 
to its application in elliptic curve 
cryptography (ECC) to realize robust 
cryptosystems in resource-constrained 
environments. A number of architectures 
have been proposed for efficient 
implementation of multiplication over 
GF(2m). Several algorithms and 
architectures are suggested in the literature 
for polynomial basis multiplication for the 
fields generated by trinomials and 
pentanomials, primarily due to their 
computational simplicity. In this, the 
decomposing of the Dadda multiplication into 
two concurrent blocks and we have derived a 
lower-latency multiplier using the proposed 
modular reduction scheme using PCA. From 
the table it can be conclude that the proposed 
Dadda multiplier along with Spanning tree 
adder gives better results than the existed 
Montgomery multiplier. This design which is 
proposed has significantly less area as well 
power complexities beyond with the best of 
the existing designs. For solving this we have 
used ISE simulator in verifying functionality 
and the synthesis was performed by using 
Xilinx ISE 12.3i EDA tool along with Verilog 
HDL coding Language. 
Keywords: Pentanomial, Montgomery 
Multiplier, Finite Field, Verilog. 

I.  INTRODUCTION 

A Finite field, which is known as a Galois 
field, that has been originated from the French 
mathematician Pierre Galois. The elements 
which will take q different values will be 
known as GF (q). Addition and multiplication 

were the two formal properties present for 
finite field. The outcome of two elements by 
adding or multiplying, present in the the field 
will always has an element located in the field 
itself. Any of the one element located in the 
field will be zero, so that a +  0 

= a, if we take any element ‘a’ in the field. One 
of  the element of the field is unity, so a • 1 = a 
for any element a in the field. For every 
element a in the field, there is an additive 
inverse element -a, such that a + ( - a) = 0. It 
also allows the operation of subtraction which 
is defined as inverse of the addition. Each of 
non-zero element b in the field will have a 
multiplicative inverse element b-1 such that b 
b-1= 1. It also allows division operation of 
which it is defined as inverse of the 
multiplication. The associative [a + (b + c) = (a 
+ b) + c, a 

• (b • c) = [(a • b) • c], commutative [a 
+ b = b + a, a • b = b • a], and distributive [a • (b 
+ c) = a • b 

+ a • c] laws apply. These properties cannot be 
satisfied for all possible field sizes. However 
these can be satisfied if the field size is of any 
prime number or any integer which should be 
power of a prime.The finite fields are 
classified as follows: 

 The number of elements in a finite field is 
of the form  pn, where p is a prime number 
called the characteristic of the field, and n 
is a positive integer. 

 For every prime number p and positive 
integer n, there exists a finite field with 
pn elements. 

By this it justified that finite fields specifies 
only the order of the  field. One  notation for a 
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finite  field is  or Fpn. Another notation is 
GF(pn), where the letters GF stand for "Galois 
field". A field of prime power with p = 2 is also 
known as binary field. First we consider fields 
where the size is prime, i.e., with n = 1. Such 
field is named a prime field, and is canonically 
isomorphic to the ring Z/pZ, the set of integers 
modulo p. Even though all fields which are of 
size p are isomorphic to Z/pZ, for n ≥ 2 the ring 
of integers modulo pn, Z/pnZ, is not a field. 
The element p is nonzero also it has no 
multiplicative inverse modulo pn. By 
comparison with the ring Z/4Z of size 4, the 
underlying additive group of the field 
(Z/2Z)[T]/(T2 + T + 1) of size 4 is not cyclic, 
even it is isomorphic to the Klein four-group. 
No fields exist for which the size is not a prime 
power. For example, there is no field with 6 
elements. Given a prime power q = pn, 
explicitly we would construct a finite field 
with q elements as follows. Select  a  monic  
irreducible  polynomial  f (T)  of  degree  n  in 
Fp[T].  Then  Fp[T]/(f (T))  is  a  field  of  size  q  
Here,  Fp[T] denotes the ring of all 
polynomials in T with coefficients in Fp,(f (T))   
denotes   the   ideal   generated   by  f (T),   and  
the quotient is meant in the sense of quotient 
rings the set of polynomials in T with 
coefficients in Fp mod (f (T)). 

II. MONTGOMERY MULTIPLICATION 

In this type of multiplication method, the 
given values will be computed as ‘ab mod m’ 
for every positive integers a, b, and m. The 
execution time will be reduced when there will 
be of huge number of multiplications has to be 
performed along the same modulus m, and by 
small number of multipliers, using this 
multiplier. As a result, it is helpful in 
computing an mod m for a huge value of n. The 
count of multiplications of a modulo m in the 
above type can be reduced to a small number 
substantially from that of n by successively 
squaring combined with multiplying as per the 
pattern of the binary expression bits for n. But 
still this can be enough as a large enough 
number to be worthwhile speeding up if there 
is a possibility. The method, will changes the 
reduction modulo m to a reduction modulo r 
essentially. In general r is chosen as an integral 
power of 2, and then the reduction modulo r is 
simply a masking operation; which is, 
retaining the lg(r) low-order bits of an 

intermediate result, and discarding all higher 
order bits. If r is a power of 2, then m is odd, to 
satisfy the gcd requirement. (Any of the odd 
value from 3 to r − 1 would be acceptable.). 
Working on n-digit numbers to base d, a 
Montgomery step calculates axb÷dm (mod r) 

The base d is typically 2 for microelectronic 
applications, 28 for 8-bit firmware,[4] or 232 or 
264 for software applications. Due to exposition, 
we shall illustrate with d = 10 and n = 4. To 
change this to a modular operation with a 
modulus r, add, immediately before every shift, 
whatever the multiple of r is to be needed for 
making the value in the accumulator a multiple 
of 10. The result will be, which means the final 
value in the accumulator would be an integer 
(since only multiples of 10 have been divided 
with 10) along with equivalent (modulo r) to 
472× a ÷ 10000. Finding the appropriate 
multiple of r is the simplest operation for 
single-digit arithmetic. The theory as well 
practice for Montgomery multiplication has 
explained in this note. This will reduces 
execution-time a computer whenever there will 
be a huge number of multiplications are to be 
completed with the same modulus m, and by 
using less number of multipliers. In particular, it 
is useful for computing an mod m for a huge 
value of n. The reductions of modulo m are the 
only difficulty in which, essentially division 
operations that are costly in execution time. If 
one defers the modulus operation till the end, so 
that the products may grow to very large 
numbers, which will slows down the 
multiplications and also the final modulus 
operation. For using Montgomery 
multiplication, the multipliers a and b must have 
less than the modulus m. Another integer r has 
been introduced by us. This method accordingly, 
changes the reduction modulo m to a reduction 
modulo r. In general r is chosen to be an inte-gral 
power of 2, thus the reduction modulo r is simply 
a masking operation, which means, retaining the 
lg(r) low-order bits of an intermediate result, and 
discarding higher order bits. If r is a power of 2, 
we must have m odd, for satisfying the gcd 
requirement. 
 
III. GALOIS FIELD IN CRYPTOGRAPHY  
In this paper we introduce the basics of Galois 
Field and also its implementation as of storing 
data. This paper shows and helps in visualizing 
as that of storing data in Galois Fields allows 
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manageable and effective data manipulation, 
where it focuses mainly on application in 
computer cryptography. Details about the 
algorithm used in Advanced Encryption 
Standard (AES), which is an example for 
computer cryptography that utilizes Galois 
Field, will also be included. Galois Field, named 
after Evariste Galois, also known as finite field, 
refers to a field in which there exist finitely many 
elements. It is particularly useful in translating 
computer data as they are represented in binary 
forms. 

 
Fig1. Low Latency Montgomery Multiplier 
Design. 
 
Binary System: In the binary numeral system or 
base-2 number system, we represent each value 
with 0 and 1. To convert a decimal numeral 
system or base-10 number system into binary 
system, we need to represent a decimal in terms 
of sums of an2n. 
 

 
 
For leading and omitting zeros the coefficients 
an is then written in descending. Thus produced 
final value will be the decimal equivalent. 
Ultimately, binary system offers an alternative 
way of representing the elements of a Galois 
Field.  
Example: 

 
 
So the binary representation of 19 will be as 
10011 and where as the elements of gf(23) in 
binary are gf (23) = (001, 010, 011, 100, 101, 
110, 111). 
Dadda Multiplier: The Dadda multiplier is a 
type of hardware multiplier which is a type of 
design, invented by computer scientist known as 

Luigi Dadda in 1965. Which is similar to that of 
Wallace multiplier, but not exactly and it is of 
little faster (for all operand sizes) and requires 
less number of gates (for all but the smallest 
operand sizes). However, Wallace multipliers 
are not same as like Dadda multiplier, which 
reduces as much as possible accordingly on each 
and every layer. Because of this reason, Dadda 
multipliers is a little expensive reduction phase, 
However the numbers may be of few bits longer, 
So as requiring slightly bigger adders. For 
getting this, the structure of the second step is 
modified by slightly with complex rules than in 
the Wallace tree. As of the Wallace tree, a new 
layer would be added as if the weight is carried 
by three or else with more wires. The rules in the 
reduction for the Dadda tree, however, are as 
shown below:  

 Take any of the three available wires which 
are of same weights and give those as 
inputs into a full adder. The final result wil 
output wire of the same weight and an 
output wire which are of higher weight for 
each of the three input wires. 

 If there are two wires were left and are of 
the same weight, and also as the current 
number of output wires as of the weight is 
equal to 2 (modulo 3), give as input into a 
half adder. Or else, bypass them through to 
the next layer. 

 If there were only one wire left, then 
connect it to the next layer.  

In this step addition will be only be done as 
many times as required as per the need, so that 
the output weights count will  stays close to the 
multiple of 3, which is the ideal count of  weights 
when-ever we use full adders as of 3:2 
compressors. If two wires were present which 
are of same weight, left it them as it is, and the 
number of output wires at that time with that 
weight would be equal to 1 or 2 (modulo 3), 
input them into a half adder. Or else, bypass 
them to the next layer.  
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Fig2. Dot Diagram for 8 by 8 Dadda 
Multiplier. 
 
Spanning Tree Adder: We can state that an 
undirected graphs which are having a set of V of 
vertices (also can represented with nodes) and a 
set E of edges, each of which is connecting two 
separate vertices. More by mathematically 
calculations, we would speak that the edge 
relation between vertices is of same manner for 
undirected graphs. Here we discuss about 
undirected graphs, as if directed graphs will also 
play an important role in most of the 
applications. Below is the simple example for a 
connected, undirected graph along with 5 
vertices (A;B;C;D;E) and 6 edges (AB, BC, CD, 
AE, BE, CE) 

 
Fig3. Examples of a connected, undirected 
graph with 5 vertices. 
Here we were interested particularly towards the 
problem of computing a spanning tree for a 
connected graph. What is a tree here? They are 
nothing but a bit different than the binary search 
trees which are considered previously. One of 
the definition which is simple was that a tree is a 
connected graph consists with no cycles, where a 

cycle let’s you go from a node to itself without 
repeating any of its edge. A connected graph for 
a spanning tree, represented with G is a tree 
containing all the vertices of G. The two 
examples of spanning trees were represented 
below, which reflects our original example 
graph.  

 
Fig4. Examples of spanning trees for our 
original. 
When a asymptotic complexity is considered, it 
is necessary to categorize graphs with a dense or 
sparse. A lot of edges will be present in dense 
graphs when compared to the number of 
vertices. Representing the n = |V| for most of the 
vertices, as we know there can be at most n * 
(n-1)/2: each and every node is connected to any 
of the other node (n * (n-1)), but in an undirected 
way (n*(n-1)/2). If we represent e as the number 
of edges, we would have e = O(n2). By 
comparison, a tree is sparse because e = n-1 = 
O(n). 
 
 

 
Fig5. Spanning Tree Adder Architecture.  
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IV. RESULTS 

 
Fig6. RTL. 
 

 
Fig7. Technological 
 

 
Fig9. Simulation Waveform. 

A. Table1. Comparison 

 

Number 
of 4 

input 
LUTs 

Power 
Consumption 

(mW) 

Delay 
(ns) 

Existing 
System 

153 1.248 18.831 

Proposed 
System 

121 0.987 30.417 

 
 

V. CONCLUSION  
In this project, we have presented a novel PCA 
technique and modular reduction scheme for 
Montgomery multiplication over GF(2m) based 

on irreducible pentanomials. To illustrate the 
efficiency of the proposed approach, it has 
designed the multiplier for the irreducible  
pentanomial for simplicity of proceeding. In this, 
the decomposing of the Dadda multiplication 
into two concurrent blocks and we have derived 
a lower-latency multiplier using the proposed 
modular reduction scheme using PCA. From the 
table it can be conclude that the proposed Dadda 
multiplier along with Spanning tree adder gives 
better results than the existed Montgomery 
multiplier. The multiplier design proposed in 
this paper produced 121 LUT’S whereas the 
conventional multiplier produced 10490 LUT’s. 
This indicates that the proposed multiplier 
design in area efficient. Power consumed by the 
Montgomery multiplier is 9.196 mw which is 
less than conventional multiplier design having 
797.24 mw of power consumption. Because in 
the proposed Montgomery design the processing 
elements will reduce the maximum logic when 
compare with the other multipliers which are the 
main advantage of this design. 
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