

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-7, 2018

55

HIGH PERFORMANCE MONTGOMERY MULTIPLICATION

USING DADDA TREE ADDITION
Thandri Adi Varalakshmi Devi1, P Subhashini 2

1PG Scholar, Dept of ECE, Kakinada Institute of Technology, Korangi, AP, India.
2Assistant Professor, Dept of ECE, Kakinada Institute of Technology, Korangi, AP, India

Abstract
In recent years, finite fields arithmetic over
GF(2m) has gained very high importance due
to its application in elliptic curve
cryptography (ECC) to realize robust
cryptosystems in resource-constrained
environments. A number of architectures
have been proposed for efficient
implementation of multiplication over
GF(2m). Several algorithms and
architectures are suggested in the literature
for polynomial basis multiplication for the
fields generated by trinomials and
pentanomials, primarily due to their
computational simplicity. In this, the
decomposing of the Dadda multiplication into
two concurrent blocks and we have derived a
lower-latency multiplier using the proposed
modular reduction scheme using PCA. From
the table it can be conclude that the proposed
Dadda multiplier along with Spanning tree
adder gives better results than the existed
Montgomery multiplier. This design which is
proposed has significantly less area as well
power complexities beyond with the best of
the existing designs. For solving this we have
used ISE simulator in verifying functionality
and the synthesis was performed by using
Xilinx ISE 12.3i EDA tool along with Verilog
HDL coding Language.
Keywords: Pentanomial, Montgomery
Multiplier, Finite Field, Verilog.

I. INTRODUCTION

A Finite field, which is known as a Galois
field, that has been originated from the French
mathematician Pierre Galois. The elements
which will take q different values will be
known as GF (q). Addition and multiplication

were the two formal properties present for
finite field. The outcome of two elements by
adding or multiplying, present in the the field
will always has an element located in the field
itself. Any of the one element located in the
field will be zero, so that a + 0

= a, if we take any element ‘a’ in the field. One
of the element of the field is unity, so a • 1 = a
for any element a in the field. For every
element a in the field, there is an additive
inverse element -a, such that a + (- a) = 0. It
also allows the operation of subtraction which
is defined as inverse of the addition. Each of
non-zero element b in the field will have a
multiplicative inverse element b-1 such that b
b-1= 1. It also allows division operation of
which it is defined as inverse of the
multiplication. The associative [a + (b + c) = (a
+ b) + c, a

• (b • c) = [(a • b) • c], commutative [a
+ b = b + a, a • b = b • a], and distributive [a • (b
+ c) = a • b

+ a • c] laws apply. These properties cannot be
satisfied for all possible field sizes. However
these can be satisfied if the field size is of any
prime number or any integer which should be
power of a prime.The finite fields are
classified as follows:

 The number of elements in a finite field is
of the form pn, where p is a prime number
called the characteristic of the field, and n
is a positive integer.

 For every prime number p and positive
integer n, there exists a finite field with
pn elements.

By this it justified that finite fields specifies
only the order of the field. One notation for a

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-7, 2018

56

finite field is or Fpn. Another notation is
GF(pn), where the letters GF stand for "Galois
field". A field of prime power with p = 2 is also
known as binary field. First we consider fields
where the size is prime, i.e., with n = 1. Such
field is named a prime field, and is canonically
isomorphic to the ring Z/pZ, the set of integers
modulo p. Even though all fields which are of
size p are isomorphic to Z/pZ, for n ≥ 2 the ring
of integers modulo pn, Z/pnZ, is not a field.
The element p is nonzero also it has no
multiplicative inverse modulo pn. By
comparison with the ring Z/4Z of size 4, the
underlying additive group of the field
(Z/2Z)[T]/(T2 + T + 1) of size 4 is not cyclic,
even it is isomorphic to the Klein four-group.
No fields exist for which the size is not a prime
power. For example, there is no field with 6
elements. Given a prime power q = pn,
explicitly we would construct a finite field
with q elements as follows. Select a monic
irreducible polynomial f (T) of degree n in
Fp[T]. Then Fp[T]/(f (T)) is a field of size q
Here, Fp[T] denotes the ring of all
polynomials in T with coefficients in Fp,(f (T))
denotes the ideal generated by f (T), and
the quotient is meant in the sense of quotient
rings the set of polynomials in T with
coefficients in Fp mod (f (T)).

II. MONTGOMERY MULTIPLICATION

In this type of multiplication method, the
given values will be computed as ‘ab mod m’
for every positive integers a, b, and m. The
execution time will be reduced when there will
be of huge number of multiplications has to be
performed along the same modulus m, and by
small number of multipliers, using this
multiplier. As a result, it is helpful in
computing an mod m for a huge value of n. The
count of multiplications of a modulo m in the
above type can be reduced to a small number
substantially from that of n by successively
squaring combined with multiplying as per the
pattern of the binary expression bits for n. But
still this can be enough as a large enough
number to be worthwhile speeding up if there
is a possibility. The method, will changes the
reduction modulo m to a reduction modulo r
essentially. In general r is chosen as an integral
power of 2, and then the reduction modulo r is
simply a masking operation; which is,
retaining the lg(r) low-order bits of an

intermediate result, and discarding all higher
order bits. If r is a power of 2, then m is odd, to
satisfy the gcd requirement. (Any of the odd
value from 3 to r − 1 would be acceptable.).
Working on n-digit numbers to base d, a
Montgomery step calculates axb÷dm (mod r)

The base d is typically 2 for microelectronic
applications, 28 for 8-bit firmware,[4] or 232 or
264 for software applications. Due to exposition,
we shall illustrate with d = 10 and n = 4. To
change this to a modular operation with a
modulus r, add, immediately before every shift,
whatever the multiple of r is to be needed for
making the value in the accumulator a multiple
of 10. The result will be, which means the final
value in the accumulator would be an integer
(since only multiples of 10 have been divided
with 10) along with equivalent (modulo r) to
472× a ÷ 10000. Finding the appropriate
multiple of r is the simplest operation for
single-digit arithmetic. The theory as well
practice for Montgomery multiplication has
explained in this note. This will reduces
execution-time a computer whenever there will
be a huge number of multiplications are to be
completed with the same modulus m, and by
using less number of multipliers. In particular, it
is useful for computing an mod m for a huge
value of n. The reductions of modulo m are the
only difficulty in which, essentially division
operations that are costly in execution time. If
one defers the modulus operation till the end, so
that the products may grow to very large
numbers, which will slows down the
multiplications and also the final modulus
operation. For using Montgomery
multiplication, the multipliers a and b must have
less than the modulus m. Another integer r has
been introduced by us. This method accordingly,
changes the reduction modulo m to a reduction
modulo r. In general r is chosen to be an inte-gral
power of 2, thus the reduction modulo r is simply
a masking operation, which means, retaining the
lg(r) low-order bits of an intermediate result, and
discarding higher order bits. If r is a power of 2,
we must have m odd, for satisfying the gcd
requirement.

III. GALOIS FIELD IN CRYPTOGRAPHY
In this paper we introduce the basics of Galois
Field and also its implementation as of storing
data. This paper shows and helps in visualizing
as that of storing data in Galois Fields allows

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-7, 2018

57

manageable and effective data manipulation,
where it focuses mainly on application in
computer cryptography. Details about the
algorithm used in Advanced Encryption
Standard (AES), which is an example for
computer cryptography that utilizes Galois
Field, will also be included. Galois Field, named
after Evariste Galois, also known as finite field,
refers to a field in which there exist finitely many
elements. It is particularly useful in translating
computer data as they are represented in binary
forms.

Fig1. Low Latency Montgomery Multiplier
Design.

Binary System: In the binary numeral system or
base-2 number system, we represent each value
with 0 and 1. To convert a decimal numeral
system or base-10 number system into binary
system, we need to represent a decimal in terms
of sums of an2n.

For leading and omitting zeros the coefficients
an is then written in descending. Thus produced
final value will be the decimal equivalent.
Ultimately, binary system offers an alternative
way of representing the elements of a Galois
Field.
Example:

So the binary representation of 19 will be as
10011 and where as the elements of gf(23) in
binary are gf (23) = (001, 010, 011, 100, 101,
110, 111).
Dadda Multiplier: The Dadda multiplier is a
type of hardware multiplier which is a type of
design, invented by computer scientist known as

Luigi Dadda in 1965. Which is similar to that of
Wallace multiplier, but not exactly and it is of
little faster (for all operand sizes) and requires
less number of gates (for all but the smallest
operand sizes). However, Wallace multipliers
are not same as like Dadda multiplier, which
reduces as much as possible accordingly on each
and every layer. Because of this reason, Dadda
multipliers is a little expensive reduction phase,
However the numbers may be of few bits longer,
So as requiring slightly bigger adders. For
getting this, the structure of the second step is
modified by slightly with complex rules than in
the Wallace tree. As of the Wallace tree, a new
layer would be added as if the weight is carried
by three or else with more wires. The rules in the
reduction for the Dadda tree, however, are as
shown below:

 Take any of the three available wires which
are of same weights and give those as
inputs into a full adder. The final result wil
output wire of the same weight and an
output wire which are of higher weight for
each of the three input wires.

 If there are two wires were left and are of
the same weight, and also as the current
number of output wires as of the weight is
equal to 2 (modulo 3), give as input into a
half adder. Or else, bypass them through to
the next layer.

 If there were only one wire left, then
connect it to the next layer.

In this step addition will be only be done as
many times as required as per the need, so that
the output weights count will stays close to the
multiple of 3, which is the ideal count of weights
when-ever we use full adders as of 3:2
compressors. If two wires were present which
are of same weight, left it them as it is, and the
number of output wires at that time with that
weight would be equal to 1 or 2 (modulo 3),
input them into a half adder. Or else, bypass
them to the next layer.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-7, 2018

58

Fig2. Dot Diagram for 8 by 8 Dadda
Multiplier.

Spanning Tree Adder: We can state that an
undirected graphs which are having a set of V of
vertices (also can represented with nodes) and a
set E of edges, each of which is connecting two
separate vertices. More by mathematically
calculations, we would speak that the edge
relation between vertices is of same manner for
undirected graphs. Here we discuss about
undirected graphs, as if directed graphs will also
play an important role in most of the
applications. Below is the simple example for a
connected, undirected graph along with 5
vertices (A;B;C;D;E) and 6 edges (AB, BC, CD,
AE, BE, CE)

Fig3. Examples of a connected, undirected
graph with 5 vertices.
Here we were interested particularly towards the
problem of computing a spanning tree for a
connected graph. What is a tree here? They are
nothing but a bit different than the binary search
trees which are considered previously. One of
the definition which is simple was that a tree is a
connected graph consists with no cycles, where a

cycle let’s you go from a node to itself without
repeating any of its edge. A connected graph for
a spanning tree, represented with G is a tree
containing all the vertices of G. The two
examples of spanning trees were represented
below, which reflects our original example
graph.

Fig4. Examples of spanning trees for our
original.
When a asymptotic complexity is considered, it
is necessary to categorize graphs with a dense or
sparse. A lot of edges will be present in dense
graphs when compared to the number of
vertices. Representing the n = |V| for most of the
vertices, as we know there can be at most n *
(n-1)/2: each and every node is connected to any
of the other node (n * (n-1)), but in an undirected
way (n*(n-1)/2). If we represent e as the number
of edges, we would have e = O(n2). By
comparison, a tree is sparse because e = n-1 =
O(n).

Fig5. Spanning Tree Adder Architecture.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-7, 2018

59

IV. RESULTS

Fig6. RTL.

Fig7. Technological

Fig9. Simulation Waveform.

A. Table1. Comparison

Number
of 4

input
LUTs

Power
Consumption

(mW)

Delay
(ns)

Existing
System

153 1.248 18.831

Proposed
System

121 0.987 30.417

V. CONCLUSION
In this project, we have presented a novel PCA
technique and modular reduction scheme for
Montgomery multiplication over GF(2m) based

on irreducible pentanomials. To illustrate the
efficiency of the proposed approach, it has
designed the multiplier for the irreducible
pentanomial for simplicity of proceeding. In this,
the decomposing of the Dadda multiplication
into two concurrent blocks and we have derived
a lower-latency multiplier using the proposed
modular reduction scheme using PCA. From the
table it can be conclude that the proposed Dadda
multiplier along with Spanning tree adder gives
better results than the existed Montgomery
multiplier. The multiplier design proposed in
this paper produced 121 LUT’S whereas the
conventional multiplier produced 10490 LUT’s.
This indicates that the proposed multiplier
design in area efficient. Power consumed by the
Montgomery multiplier is 9.196 mw which is
less than conventional multiplier design having
797.24 mw of power consumption. Because in
the proposed Montgomery design the processing
elements will reduce the maximum logic when
compare with the other multipliers which are the
main advantage of this design.

VI. REFERENCES
[1] R.L. Rivest, A. Sharmir, and L.

Adleman, “A Method of Obtaining
Digital Signature and Public-Key
Cryptosystems,” Comm. ACM., vol. 21,
no. 2, pp. 120-126, 1982

[2] W. Diffie and M.E. Hellman, "New
Directions in Cryptography," IEEE
Trans. Information Theory, vol. 22, pp.
644-654, 1976 ‘

[3] P.L. Montgomery, "Modular
Multiplication without Trial Division,"
Math. Computing, vol. 44, no. 170, pp.
519-521, Apr. 1985.

[4] J. Menezes, P.C. van Oorschot, and S.A.
Vanstone, Handbook of Applied
Cryptography, CRC Press, 1997.

[5] C. Walter, "Systolic Modular
Multiplication," IEEE Trans. Computers,
vol. 42, no. 3, pp. 376-378, Mar. 1993 .

[6] P. Kornerup, "A Systolic, Linear-Array
Multiplier for a Class of Right-Shift
Algorithms," IEEE Trans. Computers,
vol. 43, no. 8, pp. 892-898, Aug. 1994.

[7] W.C. Tsai, C.B. Shung, and S.J. Wang,
"Two Systolic Architecture for Modular
Multiplication,", IEEE Trans. VLSI, vol.
8, no. 1, pp. 103-107, Feb. 2000.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-7, 2018

60

[8] A.F. Tenca and C.K. Koc, "A Scalable
Architecture for Modular Multiplication
Based on Montgomery's Algorithm,"
IEEE Trans. Computers, vol. 52, no.9,
pp. 1215-1221, Sep. 2003.

[9] A.F. Tenca and C.K. Koc, “High-Radix
Design of a Scalable Modular
Multiplier,” Proc. Cryptographic
Hardware and Embedded Systems
(CHES 2001), pp. 189-205, May 2001.

[10] J.J. Leu and A.Y. Wu, “Design
Methodology for Booth-Encoded
Montgomery Module Design for RSA
Cryptp-system,” Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS-2000), pp.
V.357-360, May 2000.

[11] J.H.Hong and C.W.Wu,"Radix-4
Modular Multiplication and
Exponentiation Algorithm for the RSA
Public-key Cryptosystem," ASP-DAC,
pp. 565-570, 2000 .

[12] S.F. Hsiao, M.R. Jiang and J.S. Yeh,
"Design of high speed low-power 3-2
counter and 4-2 compressor for fast
multipliers," Electronics Letters, vol. 34,
no. 4, pp. 341-343, Feb. 1998 .

[13] H. Orup, “Simplifying Quotient
Determination in High - Radix Modular
Multiplication,” Proc. 12th Symp.
Computer Arithmetic, pp. 193-199, July
1995.

