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Abstract 
In this paper a brief survey is carried out on 
use of Kalman filter for GPS receiver, where 
in a two phase Kalman filter is used for 
adaptive recognition and correction of 
baseline shifts from GPS measurements. 
Effective tracking of code and carrier in a 
GPS receiver even under weak signal 
conditions is performed using Kalman filter. 
A Modified Kalman filter is used for accurate 
GPS position estimation. Conventional GPS 
L1 phase tracking loop can be replaced by a 
more robust tracking scheme using a Kalman 
filter based PLL. Road invariant Extended 
Kalman filter is used to handle enhanced 
estimation of GPS errors. 
 

I.INTRODUCTION  
Tilting and/or rotation of the ground that 

may occur during the co-seismic period and 
instrumental effect can introduce baseline 
shifts (small steps or distortions in the 
reference level of the acceleration), which 
prevent recovery of true ground velocities and 
displacement through double integration. By 
defining four kinds of learning statistics and 
criteria, we analyse the time series of estimated 
baseline shifts from the first phase Kalman 
filter and determine the state of the baseline 
shift, then adaptively adjust the dynamic noise 
of the combined system and the length of the 
baseline shift estimation window for the second 
phase Kalman filter to yield a robust 
integration solution. After determining the 
availability of a satellite signal, the GPS 
receiver tries to track the code and carrier 
components of the signal3. The GPS receiver 

mostly uses a Delay Lock Loop to track the 
C/A code sequence and a Costas loop to track 
the carrier of the received satellite signal. The 
output of the tracking loops is the decoded form 
of the navigation message of each satellite. It 
helps the user to calculate the positions of the 
satellites. Finally, the user calculates his 
position using the pseudo-range measurements 
from the tracking loops4. When these loops lose 
the lock, i.e., when the s ignals are weak, the 
receivers can no longer track the path unless the 
code and carrier comes in lock again. This 
creates disturbance in tracking i.e., the receiver 
fails to locate its position until the signal 
becomes strong. An efficient solution for this 
problem is Kalman filter.  
The Kalman filter forms an estimate of a process 
by using a form of feedback control: it estimates 
the state of the process at some time and then 
obtains feedback in the form of measurements. It 
integrates both the measurement data, and the 
system properties, to produce a pleasing estimate 
of the desired state variables in such a manner 
that minimizes the error statistically. The various 
algorithms used for GPS receiver position 
estimate includes Least Squares5 (LS), Weighted 
Least Squares (WLS), Evolutionary optimizers6, 
Kalman filter (KF) etc. The task of tracking and 
guiding involves estimation of objects future 
course and this could be only possible when the 
system dynamics are modeled into the estimator. 
Out of the available Navigation algorithms the 
only filter that makes use of the dynamics in 
estimation is Kalmanfilter7. In addition, KF also 
provides the uncertainty in its estimation whose 
performance varies with parameters like process 
noise matrix, measurement noise matrix, 
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observation matrix etc. So this paper concentrates 
in improving KFE accuracy with a new 
observation matrix that replaces the conventional 
matrix in Kalman filter’s covariance update 
equation. The modeling of KF as GPS receiver 
position estimator and the details about new 
designed observation matrix lead to the 
development of MKFE are discussed in 
subsequent sections.   In this paper, a Kalman 
filter based PLL is developed and tested as 
against the conventional Costas PLL currently 
used for tracking. A software defined receiver 
(SDR) [7] is used as the platform for testing the 
proposed Kalman filter based PLL. A road 
invariant EKF algorithm is proposed to handle 
the enhanced estimation of the GPS errors. This 
idea is inspired from the Invariant EKF proposed 
by Bonnabel et al. [7]. Indeed, the localization 
problem possesses state invariance with respect 
to road rotations and the observability of every 
component of the state vector is kept in the road 
frame. In this work, the observability of the 
augmented state space is studied in the algebraic 
framework. 
 

II.METHODOLOGY 

1. Adaptive recognition and correction of 
baseline shifts from collocated GPS and 
accelerometer using two phase Kalman 
filter. 

1.1 The model for tight integration of GPS and 
strong motion measurements. 
Usually the following observation equations are 
used for the tight integration of GPS and strong-
motion measurements where, Lc and Pc are the 
observed minus computed phase and 
pseudorange observations from satellite to 
receiver, respectively, e is the unit direction 
vector from satellite to receiver, m is the 
tropospheric mapping function for wet delay, x 
and X denote the vectors of the receiver displace-
€ ment and acceleration, z, dt and b are the 
tropospheric zenith delay, receiver clock and 
phase ambiguities, e is the measurement noise, 
with variances r2, Wak is the acceleration 
observation noise, a and u represent the 
strongmotion acceleration observation and 
baseline shift, and k is the epoch number. 
Kalman filter can be employed for the parameters 
estimation while given an empirical observation 
weight and dynamic noise. 

1.2 The adaptive recognition of baseline shifts in 
strongmotion records 

 

Fig. 1. Adaptive recognition of baseline shifts. 
Panels (a) represents the raw acceleration 
observation, (b)–(e) represent four kinds of 
learning statistics (A, B, C and D in equations 
(4)–(7)), and (1), (2), (3) and (4) are four periods 
of the estimated baseline shifts (see text). 

Based on the defined learning statistic and 
criteria, the estimated baseline shifts can be 
analyzed and adaptively recognized. They can be 
divided into four time intervals, as shown in Fig. 
1. Here, the data come from a shaking table test, 
Initialization period: (A2&B1) or (B1&C2), 0–47 
s in fig 1.b. The beginning of the data solution. 
There is no motion and the raw acceleration is 
nearly zero but the solved baseline shift is not 
zero. However, the solved baseline shift needs 
time to converge to finish the initialization. The 
dynamic noise of the baseline shift should have a 
very small value. 
Static period: (A1), 47–95 s infig 1.b. In this 
period, the solved baseline shift is nearly zero 
and the dynamic noise of the baseline shift also 
should be very small. 
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1.3. Experimental test using a shaking table 

 

 
Fig. 3. The experimental platform, including a 
GPS receiver, a strongmotion sensor (SM) and a 
video camera. 
 

The experimental platform is shown 
schematically in fig 3. The GPS antenna and 
strong-motion sensor can slide along the rail, a 
camera system (50 Hz) was also set up to record 
the sledge motion from 10 m . The 1 Hz GPS and 
100 Hz strong-motion records were used for the 
data analysis. Baseline shifts of the strong-
motion record were caused mainly by the shifting 
weight of the cart as it moves along the track. 
After acquiring a long static record, a simple and 
one dimensional movement was introduced by 
sliding the sensors along the track forwards in 
step-wise with various accelerations, it last about 
one minute and with max acceleration 1.5 m/s2, 
finally resulting in a permanent displacement of 
0.3 m. 

 2.The Tracking Channel of a GPS Receiver  

The received signal from a satellite is a 
combination of PRN code, carrier signal and 
navigation data. To obtain the position of a GPS 
receiver, the navigation data should be isolated 
from the above said combination. In order to 
achieve this, the tracking channel has to generate 
two replicas, one for the carrier and other for the 
code. The initial step is to multiply the incoming 
signal with the generated carrier replica. This 
step wipes off the carrier from the incoming 
signal. The next step is to multiply the signal with 
the generated code replica and the result of this   
multiplication gives the navigation data. 
2.1 code tracking 
Code tracking loop is implemented to obtain a 
perfectly aligned replica of the code. The goal of 
this tracking loop is to track the phase of a 
specific code in the signal that is being received. 
The code tracking loop in the GPS receiver is a 
delay lock loop (DLL). It is also called as an 

early-late tracking loop. The signal that is 
obtained after the multiplication of incoming 
signal and a perfectly aligned local replica, is 
then multiplied with three code replicas, namely, 
early, prompt and late, separated by a spacing of 
½ chip. After the two multiplications, the three 
outputs are integrated and dumped. The output of 
these   integrations indicates the amount of 
correlation between specific code replica and the 
incoming signal. The prompt replica of the code 
has a phase shift obtained from the acquisition5. 
The early and late have a delay of -½ and +½ 
chip, respectively, from the prompt. 

 2.2 carrier tracking 
An exact carrier wave replica is generated for the 
data demodulation using a PLL or Frequency 
Lock Loop (FLL). The first two multiplications, 
removes the Pseudo Random Noise code and the 
carrier component in the incoming signal. The 
prompt output of the E, P, L code tracking loop 
is used to wipe off the PRN code. The local 
carrier frequency is adjusted as per the feedback 
given by the change in the phase error.  
 
2.3.kalman filter. 

A Kalman filter addresses the problems in 
which the   system is considered to be a linear, 
white and Gaussian The Kalman filter discusses 
the issue of estimating the state of a linear 
stochastic discrete process  

  xk = A.xk–1 + B.uk + wk–1  (1) 

With its measurement that is  

  zk = H.xk + Vk  (2) 

The random variables Wk and Vk represent the 
process and measurement noise, respectively. In 
general, both process noise and measurement 
noise are assumed to be independent, Gaussian 
and white. The normal probability distributions 
of these noises are assumed to be13. 

  P(w) ~ N(0,Q)  (3) 

  P(v) ~ N(0,R)  (4) 

Where Q represents process noise covariance 
and R represents measurement noise covariance. 
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  Fig 2  Basic operation of the Kalman Filter. 

The n*n matrix A in the state equation relates 
the  previous state at instant k-1 to the state at the 
current instant, k, in the absence of either a input 
function or process noise. In general, the 
transition matrix A might change with each time 
step, but in the proposed design it is taken as a 
constant. The matrix B relates the control input to 
the predicted state x. The ‘H’ matrix in the 
measurement equation gives the relation between 
state and the corresponding measurement zk. In 
general, H might change with each time step or 
measurement, but in the proposed design it is 
taken as a constant. The Kalman filter is a special 
type of filter whose gain varies with time. The 
variation of Kalman gain depends on the 
variation of measurement noise statistics and 
process noise statistics. The measurement noise 
statistics and its variation depend on C/No levels 
and jamming. The process noise statistics and its 
variation is dependent on user dynamics. The 
Kalman filter can optimally separate signal from 
noise, if it is provided with the relevant process 
and measurement noise matrices. 

 
3. Modified Kalman Filter for GPS Receiver 

Position Estimation 
The GPS receiver either onboard an aircraft or 

fixed stationary on a building roof as show in 
Fig.1 uses travel time or Time of Flight (TOF) 
measurements in determining its position. GPS 
TOF Si ,Rx measurement is the time elapse of a 
signal to reach at the receiver, Rx, from ith 
satellite, Si. For acceptable level of accuracy in 
position estimate GPS requires minimum of four 
TOF measurements from individual satellites8. 
Every TOF corresponds to a range measurement 
which is formulated as in Eq.1. Solving these set 
of equations for unknown receiver position is a 
highly complex process as they are nonlinear9 
Hence, Extended Kalman Filter Estimator 
(EKFE) or KFE with linearised measurement 
equations is used to estimate the unknown 
receiver position.  
 

  

 Fig3.1. GPS Receiver Placement Scenarios  

4.Kalman  filter based Phased Lock Loop.      
Two options are taken into consideration:  
 A three-state Kalman filter approach with 

two primary equations.  The state 
variables are: Phase error, Doppler 
frequency and Doppler frequency rate. 
Depending upon the C/No value, Kalman 
gain is selected. 

 A classical five-equation Kalman filter. It 
requires the knowledge of the state noise 
and the measurement noise.  

 Option one has been taken into 
consideration to implement the proposed 
Kalman filter based PLL.     

4.1. kalman filter based PLL tracking 
technique.  

  This Kalman filter based PLL (KFP) 
algorithm is equivalent to a carrier tracking loop 
of order three. The duration of one bit navigation 
message is 20 ms. The Kalman filter estimates 
the following state vector at the accumulation 
time tk. Consider the state vector of the Kalman 
filter, 

  xk = [ Δϕk , wk , αk ] T                              (1) 

Where,              Δϕk = The phase difference 
between the true carrier phase and the phase 
generated by the PLL’s NCO.                wk  = The 
carrier Doppler shift.                       αk = The rate 
of change of carrier Doppler shift.     At the start 
of the interval, Kalman filter begins with an 
estimate of the state given as 

        xk = [ Δϕ̂k , ŵk , α̂k ]T                            (2)  

 As mentioned earlier, this algorithm uses the 
three-state Kalman filter approach with two 
primary equations. The Kalman gain, denoted as 
K is selected depending upon the C/No value 
.Therefore, the two covariance equations 
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obtained during the prediction stage and the 
update stage is not considered. Also, the phase 
measurement function uses the output of an atan 
discriminator and so the estimation of the data bit 
is not considered.     

  yk+1= atan (Qk+1/Ik+1)                            (3)  

 Where, Q and I indicate the Quadrature and 
In-phase outputs of the correlator at (k+1) 
interval. During the initialization stage, the 
completed acquisition calculations from the 
acquisition stage are used to initialize the DLL’s 
code phase estimate and the PLL’s carrier 
Doppler shift estimate, ŵ0.The PLL’s first two 
NCO frequencies, 0 and 1 are 
initialized using the acquisition’s Doppler shift 
estimate. PLL’s NCO carrier phase is initialized 
to zero that is ϕPLL0 = 0. The Kalman filter 
phase difference estimate is initialized using the 
first accumulations. Δϕ̂0 = -atan2 (Q0, I0). The 
PLL’s carrier Doppler shift rate is initialized to 0 
that is α0 = 0. [4] ns are given below.  

CONCLUSION 
 The tight integration model and two phases 
Kalman filter are used for the combined data 
solution. Once the transient baseline shift is 
recognized, the dynamic noise and the length of 
the baseline shift estimation window are 
adaptively adjusted for a robust integration 
solution. The validations show that, the 
acceleration baseline shifts can be adaptively 
recognized. In such cases, not only are baseline 
shifts in the strong-motion accurately corrected, 
but also the high resolution acceleration records 
help to constrain the GPS for a better solution. As 
the two phases Kalman filter adaptively adjusted 
the estimation strategy, thus, more robust 
solutions can be provided. Kalman filter 
produces the optimum output using a 
combination of measurements and state equation. 
The algorithm presented, and simulation results, 
show that the need for frequent reacquisition of 
the system, under weak signal conditions, is 
prevented.The observation matrix designed out 
of first order Taylor’s approximation of nonlinear 
measurement function is modified and used for 
parameter estimation. The developed algorithm 
was used to estimate the three dimensional 
position of the GPS receiver and its performance 
was evaluated with various SAM. A KFPLL has 
been designed to replace the conventional carrier 

tracking loop filter in a software based GPS 
receiver. Real GPS IF data has been used to test 
the design and  results obtained are shown. A 
road invariant EKF algorithm has been proposed 
and tested. In particular, the proposed state space 
model is observable and a bijective 
transformation between roads guarantees the 
continuity of the Kalman filter estimates. 
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