

ANALYTICS AND VISUALIZATION FOR DETECTING THE STREET LIGHT FAILURES ACROSS THE CITY

Swathi M¹, Dalin Alet Sequeira², Puneeth B R³ Department of MCA, NMAMIT, Nitte, Udupi

Abstract

"Detecting The Street Light Failures Across A City" is a is an automated system which automates the streetlight. The main aim is to analyse the Pattern of Street light and to reduce the power consumption. The street light will be turned on when there is dark otherwise the lights will be switched OFF. With advancement of technology, things are becoming simpler and easier for everyone in the world today. To reduce the human work Automation plays an important role in the world economy and in daily experience and is mainly used in control systems and information technologies. Automatic systems are being preferred over manual system. The system application in street light control for each lamp will reduce the usage of electricity and maintenance cost, and increase the lifetime of street light.

I. Introduction

"Detecting The Street Light Failures Across A City" is a simple and powerful concept, where we search a location based on Google maps, and then based on street it switches ON and OFF the street light automatically. In this system manual works are removed. Street lights can be fitted with sensors to turn on and off, based on the luminosity. If it gets dark earlier in the day, the light can go on automatically. They also have a specific location on a map. with а latitude/longitude value. It automatically switches ON/ OFF lights based on the luminosity of Sunlight the objective of this project is to remotely control the street lights using a software. There are tens of thousands of street lights across any city. These street lights are controlled centrally in some cities, and locally in others. Many times, we see problems like street lights not switched on, some failing

repeatedly, some being on during the day etc. These lead to increased consumption in many cases, and calls to the electricity agencies.

II. Literature Survey

"Detecting The Street Light Failures Across A City" is all about to control the power consumptions of streetlights and eliminating manpower. During daytime there is no requirement of street lights so that the street light will be off until the light level is low. In the present generation human has become too busy, and is unable to find time even to switch off the lights whenever not necessary. Hengyu Wu, Minli Tang proposed about the core technology of streetlight control system based on AT89S52 single-chip microcomputer .It integrates a power consumption .Gong Siliang describes a remote streetlight monitoring system based on wireless sensor network. The system can set to run in automatic mode. Main advantages of street lighting includes: prevention of accidents and increase in safety.

III. Proposed System

- The objective of this project is to remotely control the street lights, where we have programs to generate data for luminosity, along with the latitude and longitude of the location.
- We use simulated random data to set the light to ON/OFF based on the luminosity values (if it becomes dark the light needs to be turned on.

If there is more natural light, then the street light goes off).

- We use analytical tools to visualize the data
 on a map. To show which lights are on, off
 and the ability to filter them.
- The visualization should be refreshed to reflect the new status. Visualization can be

on a map of the area.

IV. Approach A. Visualization

Visualizations can help us in two different ways:

Communication and exploration we don't know anything about our data, and investigating it in its raw form will be impractical sometimes.

We can use data visualization to present the data in a form more suitable for exploration. The main approach used for visualization data is by using a open source charting library i. e D3.js

D3 stands for Data-Driven Documents. The word "document" in D3 refers to the DOM.

D3.js is a JavaScript library used to create interactive visualizations in the browser., It's the parsed and rendered HTML and CSS.

D3 helps to bring data using HTML, SVG, and CSS.

For drawing charts there are two different ways in D3.js

- a) Through CSV format
- i. Using MYSQL-to-CSV Converter. convert mysql data to csv format using queries.
- ii. Using html code write program to draw chart.
- b) Through Ajax

Here we need to follow the steps for drawing the charts:

i. First connect php with mysql and get data from data base.We get the data in json format as:

[{

"date":"2018-02-18","status":"null","co":"4"},

{"date":"2018-03-06","status":"off","co":"1"},

{"date":"2018-03-07","status":"on","co":"2"}]

- ii. Using Ajax you can call php file and get data from database.
- iii. Refresh API everytime for 1 sec using basic javascript.

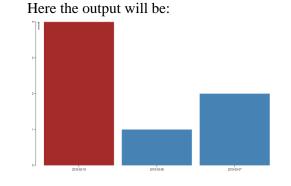


Fig 1: showing the area having the count of most failures.

B. Analytics

Analysing the data can be done using the technique called as 'Data Science' .Data Science is the principle that is used to find the hidden patterns in the data. Data Science is primarily used for prediction & decision. 'R' is the tool that is used for Data Science. In this we are using the approach 'k-means clustering algorithm'.

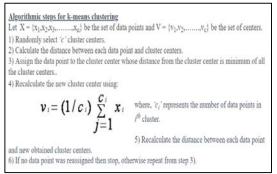


Fig 2:K-Means clustering Algorithm

i) locations<-read.csv("E:/sample/locat.csv") View(locations)

							~/finalproject - RSt.	udio						
					file <u>T</u> ools <u>H</u> e									
	ed1* × 🗍 la						-0				Connec			
	location_id 🔅		ktiude :	longitude	luninosity [÷]	no_of_lights [÷]	٩		H 🛛 🖻 Slobal En		lataset •	ł		
11	101	nuki	14,23	1.71	15.6	1065	٨	Dati	1					
2 1	102	karkala	1320	1.78	11.2	1050		01	ocation	n	24	obs. of	f 6 variables	
3 1	103	kateel	13.16	2.36	18.6	1185			ocation				f 5 variables	
4.1	102	kirnigali	1437	1.95	16.8	1480			ocation				1:4] 0.603	
5 1	108	nukka	13.24	2.59	21.0	735		· ·	ocation ocation				f 6 variables f 6 variables	
6 1	101	pemude	14.20	1.76	15.2	1450			scation esult	Б		ous.or st of 9	0 Valitautes	
11	108	bajpe	1439	1.87	14.6	1290		-	2011			JC 0. J		
8 1	102	kaikamba	14.06	215	17.6	1295		Re	Plats	Parkar	es Help	Vewer		
9 1	102	bondel	14.83	1.64	14.0	1045						Rename	🎒 More 🔹	
10 1	101	haleyangadi	13.86	1.35	16.0	1045		-	Hone				•	
11 1	101	yeskadi	14.10	2.16	18.0	1510			41					Size
12 1	101	karnad	14.12	1.48	15.8	1280	¥		t.					

Fig 3: Load the locat.csv file

This csv file contains six fields. They are location_id,location,latitude,longitude,luminosit y,no_of_lights.

II) location.f=location

Create the copy of the dataset.In that we perform clustering.so that the original dataset will not be affected.

iii)location.f\$location_id=NULL

View(location)

					~/finalproject - RSb	udio			- Ö X
Edit <u>C</u> ode <u>V</u> i	ev <u>P</u> lots	Section Build	<u>D</u> ebug <u>P</u> ro	file <u>T</u> ools <u>H</u> elp					
% ∉ •	80	🖌 Gotof	ilefundion	🗄 • Addins •					🔋 finalproject
Jetitled1* ×	locationsf	loation	5 X		-0	Environment History	Connections		-0
) (() () (ter				٩,	💡 🔒 🖻 Inport Dat	aset + 🤞		🗏 list + [
* location ÷	latitude 🤅	kongitude 🤤	luninosity [÷]	rojofjights (🏮 Global Environment 🔸			Q.
1 nuki	1423	171	15.6	1065	^	Data			^
2 katiala	1820	1.78	112	1050		0 location	24 obs. of 6 varial		
3 kated	13.16	235	18.6	1185		0 location.f	24 obs. of 5 variab		
4 kimioti	1437	1.95	16.8	1480		location.stand	the face is and and		.397 0.865 -1.248 . 🗐
5 multa	13.24		21.0	735		0 location1	24 obs. of 6 variab		
6 pertude	14.20			1450		() locations	24 obs. of 6 varial		
						0 locations.f	24 obs. of 5 variab	les	
7 bajpe	14.39			1290		Oresult	List of 9		۵,
8 kakamba	14.06					Files Plots Package	Help Viewer		-0
9 bondel	14B	1.64	14.0	1045		🎱 New Folder 🏾 🖉 De	ete 🗟 Rename 🛯 🏮 More 🗸		
10 halejangadi	13.86	135	16.0	105		🛛 🏠 Hone) finalproj	ed		8 -
11 jeikodi	14.10	2.16	18.0	1510		A flane		Sae	Nodified
12 karnad	14.12	1.48	16.8	1280	v	1. ·			

4:The column location_id is not used for clustering. so remove that particular column.

iii)locations.stand<-scale(locations.f[-1])

Untit	led1* × Q	result 🖂 🗌	locations.stan	nd × locat	ions.f 🖂 👘 locatio	ns ×
	20 V Fil	Iter				
-	location °	latitude °	longitude °	luminosity °	no_of_lights	
1	mulki	14.23	1.71	15.6	1065	
2	karkala	15.20	1.78	11.2	1050	
3	kateel	13.16	2.36	18.6	1185	
- 4	kinnigoli	14.37	1.95	16.8	1450	
5	mukka	13.24	2.59	21.0	735	
6	permude	14.20	1.76	15.2	1450	
7	bajpe	14.39	1.87	14.6	1290	
8	kaikamba	14.06	2.15	17.6	1295	
9	bondel	14.83	1.64	14.0	1045	
10	haleyangadi	13.86	1.35	16.0	1045	
11	yeskodi	14.10	2.16	18.0	1510	
12	karnad	14.12	1.48	16.8	1280	
13	mundkur	13.75	1.73	0.0	1320	
14	belman	14.75	1.73	11.4	1150	
15	kolnad	14.38	1.87	12.0	1547	
16	padbidri	13.63	1.81	17.2	1510	
17	hejamady	14.30	1.92	20.0	1280	
18	nidodi	13.83	1.57	20.0	1130	
19	mundkur	14.19	1.59	16.5	1680	
20	manjarpalke	13.64	3.10	5.0	045	
21	naniltar	14.06	1.63	16.0	780	
22	urva	12.93	3.80	18.6	770	

5:Each column contains different scale.so it is very difficult to compare when they are in different scale.so normalize the data. Normalize around mean 0 and standard deviation. Standardization is done ,so that we can compare different column.

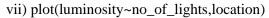
iv) result<- kmeans(locations.stand,3)

Here we are performing the clustering. In this we are predefining the number of clusters. here we are considering number of clusters as 3. In this we need k=3 because we have 3location id.

The algorithm works in such a way that ,it comes with 3 means.it allocates each row wth different means nearest value.it keeps adjusting I such a way that it cannot improve the design.so trial and error goes on multiple times.

v)attributes((result))

3		~/finalproject - RSt
Eile Edit Code View Plots	Session Build Debug Pr	ofile <u>I</u> ools <u>H</u> elp
0 • 🤫 💣 • 🗟 🔂	📥 🛛 🦽 Go to file/function	💮 * Addins *
Untitled1* × Q, result ×	locations.stand × loc	ations.f × locations ×
🗇 🗇 🗌 🔊 🗌 Show Attribu	tes	٩, ()
Name	Type	Value
result	list [9] (S3: kmeans)	List of length 9
cluster	integer [24]	213232
centers	double [3 x 4]	-0.628 0.624 -1.243 -0.551 -0.290 1.840 -0.811 0.283 0.226 -0.541 0.5
totss	double [1]	92
withinss	double [3]	16.4 16.2 12.0
tot.withinss	double [1]	44.63789
betweenss	double [1]	47.36211
size	integer [3]	6144
iter	integer [1]	2
ifault	integer [1]	0
(No selection)		
Console Terminal ×		
	() (ions.stand,3)	"withinss" "tot, withinss" "ifault"


Fig 6: In this we are displaying the attributes of the result.In clustering we require 'centers'. v) result \$ centers

					-/finalpr	oject - R
le Edit (Code View	Plots Session B	uild Debug Prof	lie Tools Help		
• Q	🐨 • 日	1 1 1 A C		- Addins -		
O Untitled	1* - C. res	att - locations	stand - locat	ions.f = locations	*	
201	CI EL CIS	ource on Save	1.11			
2 10c 1 10c 4 10c 5 res 6 att	ations.f=1 ations.fs1 ations.sta	ocation_id=Nut nd<-scale(loca s(locations.st esult))	tions.f[-1])	~)		
	ip Level) = Terminal =					Il Script
Console	Terminal =					R. Script
Console	Terminal =					
Console -/ficalpros	Terminal - oct	"centers" "size"	"totss" "iter"	"withinss" "ifault"	"tot.withinss"	
Console /Healprog	Terminal = ect = ster" weenss"	"centers"			"tot.withinss"	

Fig 7: This displays the centers of each clusters.

vi)table(locations\$location_id,result\$cluster)
> table(locations\$location_id,result\$cluster)
123
101 3 6 1
102 2 6 1
103 1 2 2

Fig 8: Here we are checking how the clustering is done.so compare original dataset with result.Each rows has a cluster.it maps.

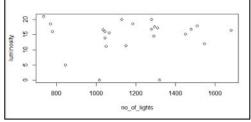


Fig 9: At the end plot the scatter graph.

V. Result & Discussion

In this we have performed two sets of experiments to investigate(i)Analytics i.e done using Data Science using R and open source Analytics tools (ii) Data Visualization is done using open source charting Libraries.

Visualization and Analytics can be used to answer common questions like :

Q1) When are failures most frequent in a specific area ?

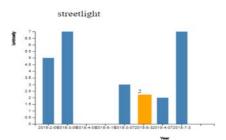


Fig 10: Bar chart showing failure in specific area.

Q2) Which area has the most failures in a given time?

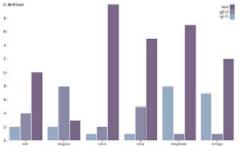


Fig 11: Stacked Bar chart showing the work condition over area.

Q3)In any given month, how many failures occur ? Where ?

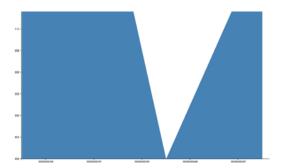
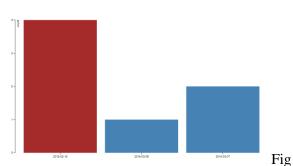



Fig 12: Bar chart showing failure in specific area

13: Bar chart showing failure in specific area.

VI. Conclusion

In "Detecting The Street Light Failures Across A City", it integrates new technologies offering ease of maintenance and energy savings. The proposed system is suitable for street light

in rural as well as urban areas. It is capable of taking corrective actions in case

of unprecedented events of climatic changes.

It prevents unnecessary wastage of electricity, due to manual switching of streetlights.

The future scope is An Android app can be developed to control the street lights remotely (by just updating the value in the database).

References

[1] Fathima Dheena P.P1, Greema S Raj3 ,Gopika Dutt3, Vinila Jinny S4 IOT Based Smart Street Light Management System Proceedings of 2017 IEEE International Conference on Circuits and Systems (ICCS2017)

[2] Deepak Kapgate "Wireless Streetlight Control System "International Journal of Computer Applications, Volume 41– No.2, March 2012.

[3] Wu yue, shi chang hong (2010), "Design of New Intelligent Street Light Control System",IEEE international Conference on Automation.

[4] Rodrigo Pantoni, Cleber Fonseca and Dennis Brandao, "Street Lighting System Based on Wireless Sensor Network", Intech 2011

[5] Fabio Leccese, Marco Cagnetti and Daniele Trinca (2014), "A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and Wi-Max", Sensors 2014