

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-5, 2018

60

BEHAVIOR-BASED ANDROID MALWARE DETECTION AND

PREVENTION
Jalaj Pachouly1, Prof. Varsha Dange2

1,2Department of Computer Engineering, Dhole Patil College of Engineering Pune

Abstract
As seen in last five years use of mobile devices
and tablets grown to manifold and ratio
between the mobile computing device to
human being already cross the 100 percent, it
means that their are more mobile computing
device than the human being, which
essentially means that per person , their are
multiple devices. As we know that Android
share the 98 percent stack as a computing
platform specially for mobile computing, in
general when talked about the smart phones
and tablets, hence at the same time, android
platform attract the more than 90 percent
cyber crime. Android do have security
mechanism specifically designed for
controlling the permission and for App
isolation, but that is not enough to prevent and
detect the Nobel security attacks carried out
on the mobile devices, which creates serious
consequence like identity theft, data leak,
ransom-ware and compromise in privacy etc.
Hence to provide the viable solution for this
situation, it is required to deeply analyze the
misbehavior’s by deployed application to
conclude them as Malicious or genuine.
MADAM (MultiLevel Anomaly Detector for
Android Malware) is an attempt to provide
the prevention and detection to ensure the end
user safety, which basically inspect the
deployed app for all possible misbehavior’s at
various level of application execution on
android platform, mainly kernel, application
,user, package and classify the application as
malicious or genuine using the user interface
where user is informed about the Malicious
app, and user can uninstall and revoke the
permission of the application which it should
not have.
Index Terms: Android security, intrusion
detection system, malware, classification.

I. INTRODUCTION
Android being the popular platform, is the

preferred target for security attacks,which
theratens the confidence while moving business
over mobile computing. Their are various
category of malwares based on the technology
and kind of their working and activation. Such
malware can subcribe a user for high premium
unwanted services, costly phone calls and sms,
leaking the user location, contact information,
transaction information, privacy even without
noticed by the user Or when it is quite late and
damage is already done in terms of financial,
socail or in other terms.Following are the few
malware categories of malware mostly found
responsible for most of the security attacks- :

• Botnet- a network of private computers
infected with malicious software and
controlled as a group without the owners’
knowledge, e.g. to send spam

• Rootkit- a set of software tools that enable an
unauthorized user to gain control of a
computer system without being detected

• SMS Trojan-These Trojans use the SMS
(text) messaging services of a mobile device
to send and intercept messages. The user is
usually unaware of the behavior.

• Spyware-software that enables a user to
obtain covert information about another
computer activities by transmitting data
covertly from their hard drive.

• Installer-a piece of software that installs a
program on a device

• Ransom-ware-a type of malicious software
designed to block access to a computer
system until a sum of money is paid.

• Trojan-It is a type of computer software that
is camouflaged in the form of regular
software such as utilities, games and
sometimes even anti virus programs

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-5, 2018

61

There are a set of behaviors which can classify
an application to be malicious or genuine, can be
leveraged to detect and classify an application.
More than 90 percent malicious software found
exposes one or more of such behaviors.
A. Text messages sent by a non-default message

app.
Every smart phone has one default sms sending

program, if some other application are sending
the SMS, then such app can be suspicious..
B. Text messages sent to numbers not in the

user contact list.
This is the case where the Malware hijacks the

default SMS program and send premium SMS to
numbers which are not in the user contact list,
and result in loss of money, or register user to
unwanted services, and charges money.
MADAM notices this behavior and put such
apps in suspicious app list.
C. High number of outgoing message per period

of time.
This kind of behavior creates SPAM, where it

sends same message to all the contacts, usually
with objectionable, or material with having
promotions for programs without the users’
interventions.MADAM here checks the ratio,
something like message per period, which is
configurable, and if it reaches the thresh-hold,
misbehavior is detected.
D. High number of process per app.

This is one of the trick most malware uses to
crash the platform, while spanning many number
of process, which will finally result in stack
buffer overflow situation, with this information
malicious program tries to modify the OS
behavior and launch malicious act, which
changing the instruction pointer to move to
malicious program execution.
E. Excessive foreground time for non

interacting and administrator app.
There are malware which tries to take control

of the device, by keeping them in foreground,
without user’s interaction, and hence not
allowing other genuine program to run in
foreground, which needs user’s intervention. If
any program tries to take control more than 30
seconds with admin privileges (Configured in
MADAM), it will be kept in suspicious app list.
F. Unauthorized installation of new apps.

These malware tries to install other app either
another kind of malware or advertisement app,
without user’s notice and authorization, and
generally known as Installers.

G. Unsolicited kernel level activity of
background app.

There are few malwares like Botnet, Spyware
and some generic Trojans, which tries to
generates an open, write or sendmsg system call,
in background state, hence considered a
misbehavior and detected as suspicious app.

II. REVIEW OF LITERATURE

Identifying malicious applications directly on
the smart phone using static analysis, gathering
as many features of an application as possible at
run-time.[1]

Android Security Framework (ASF), a generic,
extensible security framework for Android that
enables the development and integration of a
wide spec- trum of security models in form of
code-based security modules.[2]

AppGuard, a powerful and flexible security
system that overcomes these deficiencies. It
enforces user defined security policies on
untrusted Android applications without requiring
any changes to a smart phones firmware, root
access, or the
like.[3]

A policy-based framework for enforcing
software isolation of applications and data on the
Android platform. In MOSES, it is possible to
define distinct security profiles within a single
smart-phone.[4]

Alterdroid is a dynamic analysis tool that
compares the behavioral differences between an
original app and numerous automatically
generated versions of it containing carefully
injected modifications to detect Malware.[5]

An approach built to automatically perform
out-of-the-box dynamic behavioral analysis of
An- droid malware. This paper presents a unified
analysis to characterize low-level OS-specific
and high-level Android-specific behaviors.[6]

Proposed MADAM, a multilevel host-based
malware detector for humanoid devices. By
analyzing and correlating many options at four
completely different levels.[7]

Mitigating Android malware installation
through providing robust and lightweight
classifiers. A thorough analysis to extract
relevant features to malware behavior captured at
API level,and evaluated different classifiers
using the generated feature set.[8]

Studies done indicates that current Android
permission warnings do not help most users
make correct security decisions and present

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-5, 2018

62

recommendations for improving user attention
and comprehension, as well as identify open
challenges.[9]

There are experiments done to see the
effectiveness of Malware detector and found that
the best case detects 796202 , and still needs
better develop next-generation anti-
mobilemalware solutions.[10]

Fig. 1. Comparing with existing systems[11]

III. SYSTEM ARCHITECTURE / SYSTEM
OVERVIEW

Below is an architecture diagram depicting the
components of MADAM framework, which are
used to detect and prevent app misbehavior’s.

Fig. 2. MADAM Architecture[11]
To derive the features at the four system levels,
and to detect and prevent a misbehavior,
MADAM can be logically decomposed into
following main architectural blocks, which are.

1) App Risk
Assessment

 2) Global Monitor.

3) Per-App Monitor.

4) User Interface and Prevention

Below are the few important modules used in
the Live Update System.

A. App Risk Assessment
When a new app is installed on the device (

deploy-time), the App Evaluator component
intercepts and hijacks the installation event. This
component analyzes the metadata of the new app

to assess its risk, by retrieving features from the
app package, related to critical operations, and
from the market, related to app reputation. In
detail, these features are:
1) The permissions declared in the manifest

2) market of provenance

3) The total number of downloads,
developer reputation and 4) the user rating.

B. Global Monitor
Global Monitor : The Global Monitor is at the

core of the MADAM framework, since it is
responsible of collecting the run-time device
behaviors and classifying them as genuine or
malicious. Below are the important features-
1) Behavior is represented through a vector of

features.

2) The features are extracted from different
kinds of dynamic events like -User Activity,
Critical API (in particular, SMS, i.e., text
messages) and System Call (Sys Calls).

3) The Actions Logger is the component that
records all these features into a vector,
which is then fed to the

Classifier.

4) Actions Logger is trained to recognize
genuine behaviors versus malicious
behavioral patterns.

C. Per-App Monitor
The Per-App monitor is based on a set of

known malicious behavioral patterns which
considers the Suspicious App List created by the
App Risk Assessment module, the alerts raised
by the Classifier and a set of features at
application-level not considered by the
Classifier.
D. User Interface and Prevention

User Interface and Prevention: Prevention
module that acts as a security enforcement
mechanism by blocking the detected
misbehavior’s like -
1) SMS being sent without the user

authorization.

2) The User Interface (UI) module handles the
process for removing the responsible app.

3) The UI conveys to the user all the events
which require an active interaction, such as
for removing malicious apps

4) Provide choices to user to select which
behaviors should be blocked or allowed.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-5, 2018

63

5) UI is exploited by the App Evaluator to
communicate to the user the risk score of a
new app at deploy-time. In this case, the
user can then decide whether to continue the
installation (or not) of the app

Fig. 3. Relevant features for the detection of the
seven malware behavioral classes.[11]

IV. SYSTEM ANALYSIS
System analysis of MADAM covers the

various aspects of MADAM framework like
Algorithm, mathematical modelling, overhead of
running MADAM in device, usage of battery and
performance related aspects of MADAM. It is
also important to analyze the accuracy of the
detection and keep it to as low as possible to keep
good usage confidence of the detector.

A. Algorithm
1) Launch the App Evaluator in background

waiting for new apps to be installed.
2) Populate the App Suspicious List 3) Launch

Global Monitor in background, to retrieve
the 14 features and classify the app
behaviors.

4) Per-App Monitor is launched to monitor
kernel and API features to detect and stop
known behavioral patterns,using Signature-
based Detector.

5) The User Interface Prevention module kills
the app deemed as responsible, and
proposes the user to remove it.

6) Misbehaving app and the class of malware
are communicated to the user, who takes the
final decision on the app removal.

B. Mathematical Model
The first eleven features concern the system

calls related to file modification and inter-
component communication (i.e., open, ioctl, brk,
read, write, exit, close, sendto, sendmsg,
recvfrom, and recvmsg).Set of system call can be
represented as -

Set of System Call = [f1.....,f11] each fj is the
number of occurrences of system call fj The
KNN classifier exploits this geometric
representation to classify behaviors closer to-

1‐ Genuine ones as belonging to class ω0

2‐ Behaviors closer to the malicious ones as
belonging to class ω1

A K-NN (K-Nearest Neighbor) classifier,
which is a similarity-based classifier, i.e., it
classifies two similar elements as belonging to
the same class. The similarity measure used by
the K-NN classifier is the euclidean distance
measured in the features space, i.e., two elements
are considered similar if geometrically close in
the features space .

This is computed as:

Similarity

where xi and yi are the features of the vectors x
and y.

C. False Positives

Considering the reliability of the malware
detector, it is important to keep False Positive
rate as low as possible. Basically False Positive
is the case when app is genuine , where as the
detector is classifying it as Malcious. Although
this is not a dangerous situation, but it will create
the impact on the usability and reliability of the
detector, and unnecessarily bother with incorrect
information. Hence it is important to ensure that
False Positive should not decrease the reliability
of the Malware Detector. Here is the analysis for
False Positive for MADAM.

Fig. 4. False Alarms Experimental Results[11]

D. Performance Overhead and Energy

Consumption
Performance of the MADAM framework is

measured when the MADAM is running on the
device versus when the MADAM is not running
on the device. It is found that overhead of 1.4
percent when the MADAM is running, which is
very much inline with other anti malware tools.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-5, 2018

64

Battery depletion is monitored over two period
in 24 hours, and found that it is only 4 percent.

V. ADVANTAGES/DISADVANTAGES
A. Advantages
1) MADAM uses behavior based approach and

based on the classifiers which is based on 2800
real life Malware.
2) MADAM app can be run in the Learning

mode, where it keeps updating it classifiers
without UI interaction and alerts.

3) False positive rate is low , and prevent up to
96 percent Malware of real life.

4) Multilevel approach makes it possible to
dynamically detect most of current Android
malware, right on the device.

B. Disadvantages

1) MADAM also consumes the resources like
processor time and memory for preventing
and detecting the Malware, hence will
reduce the throughput of the system
globally.

2) As MADAM is based on the run time
behavior of an app, so if any app is not
exhibiting any behavior, it can hide itself for
long time being dormant.

3) As MADAM is continuously observing the
overall run time system, it consumes battery
power, although its quite less as 4 percent.

VI. RESULTS
To ensure the correctness and consistency for

malware detection, tests are conducted on
testbsed of 2800 malware samples, which are
tested on MADAM as well as
VirusTotal.VirusTotal [12] is a web-service
which performs the malware static analysis for
malware files and URLs. When we submit a file
to VirusTotal, then it submits the file to very well
known anti-virus software (around 50 to 60) ,
and returns the results confirming if it is a clean
file or it is a malware.

Fig. 5. Detection Results and Comparisons (Part
1)[11]

VII. CONCLUSION

We can conclude MADAM, as a Multi-level
host-based malware detector for Android
devices. From results we can see, MADAM is
able to detect misbehavior’s from malware
behavioral classes that consider 125 existing
malware families, which encompass most of the
known malware. MADAM is the first system
which aims at detecting and stopping at run-time
any kind of malware, without focusing on a
specific security threat, using a behavior-based
and multi-level approach. Great detection and
prevention capabilities at the cost of 1.4 percent
performance overhead and a 4 percent battery
depletion.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-5, 2018

65

Fig. 6. Detection Results and Comparisons (Part
2)[11]

Fig. 7. Detection Results and Comparisons (Part
3)[11]

REFERENCES

[1] D. Arp, M. Spreitzenbarth, M. Hubner, H.
Gascon, K. Rieck, and C. Siemens, Drebin:
Eective and explainable detection of android

malware in your pocket, in Proc. Netw.
Distrib. Syst. Security Symp., 2014, pp. 115.

[2] M. Backes, S. Bugiel, S. Gerling, and P. von
Styp-Rekowsky, Android security
framework: Extensible multi-layered access
control on android,
in Proc. 30th Annu. Comput. Security Appl.
Conf., 2014, pp. 4655. [Online]. Available:
http://doi.acm.org/
10.1145/2664243.2664265.

[3] M. Backes, S. Gerling, C. Hammer, M. Maei,
and P. von Styp-Rekowsky, Appguard ne-
grained policy enforcement for untrusted
android applications, in Proc. Data Privacy
Manag. Auton. Spontaneous Security, 2014,
pp. 213231.

[4] Y. Zhauniarovich, G. Russello, M. Conti, B.
Crispo, and E. Fernandes, Moses: Supporting
and enforcing security pro les on
smartphones, IEEE Trans. Dependable
Secure Comput., vol. 11 , no. 3, pp. 211223,
May 2014.

[5] G. Suarez-Tangil, J. Tapiador, F. Lombardi,
and R. Di Pietro, Thwarting obfuscated
malware via dierential fault analysis,
Computer, vol. 47, no. 6, pp. 2431, Jun. 2014.

[6] A. Reina, A. Fattori, and L. Cavallaro, A
system call-centric analysis and stimulation
technique to automatically reconstruct
android malware behaviors, in Proc. ACM
Eur. Workshop Syst Security, Apr. 2013, pp.
115.

[7] V. Misra. (2013). What are the exact
mechanisms/ aws exploited by the rage
against the cage and z4root android exploits?.
[Online]. Available:
http://www.quora.com/What-are-the-
exactmechanismsaws-exploited-by-the-rage-
against-the-cage-andz4root- Android-
exploits.

[8] Y. Aafer, W. Du, and H. Yin, Droidapiminer:
Mining api-level features for robust malware
detection in android, in Proc. Security Privacy
Commun. Netw., 2013, vol. 127, pp. 86103.

[9] A. P. Felt, E. Ha, S. Egelman, A. Haney, E.
Chin, and D. Wagner, Android permissions:
User attention, comprehension, and behavior,
in Proc. Symp. Usable Privacy Security, 2012,
p. 3.

[10] Y. Zhou and X. Jiang, Dissecting android
malware: Characterization and evolution, in
Proc. IEEE Symp. Security Privacy, 2012, pp.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-5, 2018

66

95109. [Online]. Available:
http://dx.doi.org/10.1109/ SP.2012.16.

[11] Andrea Saracino, Daniele Sgandurra,
Gianluca Dini, and Fabio Martinelli,
”MADAM: Eective and Ecient Behavior-
based Android Malware Detection and
Prevention,” in Proc. IEEE Symp. Security

Privacy, 2018 , IEEE Transactions on
dependable and secure computing, VOL. 15,
NO. 1, January/February 2018.

[12] Google Groups. (2015). Virustotal.
[Online]. Available: https://
www.virustotal.com/.

