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1. Introduction 

After the introduction of fuzzy sets by L. 
A. Zadeh[9], the fuzzy set theories have found 
many applications in the domain of 
mathematics. The concept of intuitionistic fuzzy 
sets was introduced by K. T. Atanassov[1, 2], as 
a generalization of the notion of  fuzzy sets.  
N. Kuroki[5] introduced and studied fuzzy 
ideals and fuzzy bi-ideals in semigroups. In this 
paper, we consider the intuitionistic 
fuzzification of the concept of a semiprime ideal 
in a semigroup and some properties of such 
ideals are investigated.   
 
2.Preliminaries 

Let S be a semigroup. By a 
subsemigroup we mean a non-empty subset A 
of S such that  
A2  A, and by a left(right) ideal of S we mean 
a non-empty subset A of S such that SA  A         
(AS  A). By two sided ideal or simply ideal, 
we mean a non-empty subset of S which is both 
a left and a right ideal of S. A subsemigroup A 

of a semigroup S is called a bi-ideal of S if ASA 
 A. A semigroup S is said to be right 
(resp.left) zero if xy = y (xy = x) for all x, y  
S. A semigroup S is said to be regular if for 
each x  S, there exists y  S such that x = xyx. 
A semigroup S is said to left (resp.right) simple 
if S itself is the only left (resp.right) ideal of S.     
 A mapping   : S  [0, 1] is called a fuzzy set 
of S and the complement is a fuzzy set in S 
given by(x) = 1 - (x) for all x  S.  
An intuitionistic fuzzy set (IFS) A in a non 
empty set X is an object having the form  
A = {<x, A(x), A(x) > / x  X}, where the 
functions  A : X  [0, 1]  and  A : X   [0, 1]  
denote the degree of membership and the degree 
of non membership of each element x  X to 
the set A, respectively, and  0 ≤ A (x) + A(x) ≤ 
1 for all x  X. 
Notation: For the sake of simplicity, we shall 
use the symbol A = <A, A> for the 
IFS  A = {<x, A(x), A(x) > / x  X}. 
 
3. Intuitionistic fuzzy semiprime ideals 

In what follows, let S denote a 
semigroup unless otherwise specified. 
Definition 3.1. Let A be an IFS in X and let t  
[0, 1]. Then the sets   
U(A ; t) = {x  X : A(x) ≥ t} and  L(A; t) = 
{x  X : A(x) ≤ t} are called a   -level t–cut 
and     -level t-cut of A, respectively. 
Definition 3.2. Let A be an intuitionistic fuzzy 
set of a set X. For each pair <t, s>  [0, 1], the 
set   A< t, s> = {x  X: A(x) ≥ t and A(x) ≤ s} is 
called the level subset of A. 
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Definition 3.3. An IFS A = <A(x), A(x)> in S 
is called an intuitionistic fuzzy subsemigroup of 
S if 
(i) A(xy)  ≥  min {A(x), A(y)}, 
(ii) A(xy) ≤ max {A(x), A(y)}, for all x, y  
S. 
Definition 3.4. An intuitionistic fuzzy -
subsemigroup A = <A(x), A(x)> in S is called 
an intuitionistic fuzzy left ideal of S if 

(i) A(xy) ≥ A(y),  
(ii) A(xy) ≤ A(y)}for all x, y  S. 

Definition 3.5. An intuitionistic fuzzy 
subsemigroup A = <A(x), A(x)> in S is called 
an intuitionistic fuzzy bi- ideal of S if 

(i)        A(xwy) ≥ min {A(x), A(y)},  
(ii) A(xy) ≤ max {A(x), A(y)}for all 

w, x, y  S. 
Example3.6. Let S = {a, b, c, d, e} be a 
semigroup with the following Cayley table: 
 

 .       a    b     c     d     e 
a       a    a     a     a     a 
b       a    a     a     a     a   
c       a    a     c     c     e 

            d       a    a     c     d     e 
e       a    a     c     c     e 

 
Clearly S is a semigroup. Define an IFS A = 
<A, A> in S by A(a) = 0.6,  A(b) = 0.5,  
A(c) = 0.4, A(d) = A(e) = 0.3 and A(a) = 
A(b) = 0.3, A(c) = 0.4, A(d) = 0.5 A(d) = 0.6. 
By routine calculation we can check that A is an 
intuitionistic fuzzy bi-ideal of S. 
Definition3.7. A semigroup S is said to be 
intuitionistic fuzzy left simple if every  
intuitionistic fuzzy left ideal of S is constant. 
Theorem 3.8. If S is left simple, then S is 
intuitionistic fuzzy left simple.    
Proof. Let A  = <A, A> be an intuitionistic 
fuzzy left ideal of S and a, b  S. 
Since S is left simple, it follows from [3, p.6] 
that there exist elements x and y in S such that  
         b = xa and a = yb. then 
         A(a) = A(yb)  ≥ A(b)  = A(xa)  = A(a) 
and A(a) = A(yb) ≤ A(b) = A(xa)  = A(a) 
So A(a) = A(b) and A(a) = A(b). Thus A(a) 
= A(b), which means A is a constant function 
because a and b are any elements of S. 
Therefore, S is intuitionistic fuzzy left simple.    
Definition 3.9. An intuitionistic fuzzy 
subsemigroup A = <A, A> of S is called an 
intuitionistic fuzzy interior ideal of S if 

(i) A(xay)  ≥  A(a), 
(ii) A(xay)  ≤ A(a) for all x, y, a  S. 

Theorem 3.10. If S is simple, then every 
intuitionistic fuzzy interior ideal of S is 
constant. 
Proof.  Let A = <A, A> be an intuitionistic 
fuzzy left ideal of S and a, b  S. Since S is 
simple, it follows from [7, Lemma 1.3.9] that 
there exist elements x and y in S such that a = 
xby. Since A is an intuitionistic fuzzy interior 
ideal of S, we have  A(a) = A(xby) ≥ A(b) 
and A(a) = A(xby) ≤ A(b). It can be seen in a 
similar way that A(b) ≥ A(a) and A(b) ≤ 
A(a). Since a and b are arbitrary elements, this 
means that A is a constant function. 
Theorem 3.11. If S is left simple, then every 
intuitionistic fuzzy bi-ideal of S is an 
intuitionistic fuzzy right ideal of S.  
Proof. Let A = <A, A> be an intuitionistic 
fuzzy bi- ideal of S and let a, b  S. 
Since S is simple, there exists x  S such that b 
= xa. Since A is an intuitionistic fuzzy  
bi- ideal of S, it follows that 
           A(ab) = A(axa) ≥ min {A(a), A(a)} = 
A(a) and 
           A(ab) = A(axa) ≤  max {A(a), A(a)} = 
A(a) 
So A is an intuitionistic fuzzy right ideal. 
Definition3.12. A subset A of a semigroup S is 
called semiprime if a2 = a imply a  A for all  
a  S.  
Definition3.13. An IFS A = <A, A> is called 
intuitionistic fuzzy semiprime if  

(i) A(x) ≥ A(x2), 
(ii) A(x) ≤ A(x2) for all x  S. 

 
Example3.14. Let S = {o, e, f, a, b} be a set 
with the following Cayley table: 

.       o   e    f     a    b 
o      o   o    o    o   o 
e      o    e    o   a    o   
f       o   o    f    o    b 

            a      o   a     o   o    e 
b      o   o    b   f     o 

 
Clearly S is a semigroup. Define an IFS A = 
<A , A> in S by A(e) = A(f) = 1,  
A(a) = A(b) = A(o) = 0 and A(e) = A(f) = 0, 
A(a) = A(b) = A(o) = 1. By routine  
calculation A is an intuitionistic fuzzy 
semiprime of S. 
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Theorem 3.15. If A is semiprime, then (A,A) 
is intuitionistic fuzzy semiprime.  
Proof. Let a  S. If a2  A, then since A is 
semiprime, we have a  A. Thus A(a) = 1 ≥ 
A(a2) andA(a) = 1 - A(a) ≤ 1 - A(a2) 
=A(a2). If  a2  A, then we have A(a2) = 0. 
Therefore           A(a) ≥ 0 = A(a2) andA(a2) = 
1 - A(a2) ≥ 1 - A(a) =A(a). 
This proves the theorem.  
Theorem 3.16.  Let A be a non-empty subset of 
S. If (A,A) is  intuitionistic fuzzy semiprime,  
then A is semiprime.  
Proof.  Let (A,A) be intuitionistic fuzzy 
semiprime and let a2  A Then A(a) ≥ A(a2) = 
1.         So a  A,A(a) ≤ A(a2) = 1 - A(a2) = 
1 – 1 = 0. That is, A(a) = 1. This shows that a 
 A. 
This proves the theorem.  
Theorem 3.17. For any intuitionistic fuzzy 
subsemigroup A = <A, A> of S, if A is 
intuitionistic fuzzy semiprime, then A(a) = 
A(a2). 
Proof.  Since A is intuitionistic fuzzy 
semiprime of S, we have  
   A(a)  ≥ A(a2) = min {A(a), A(a)} = A(a) 
  A(a) ≥ A (a2) = max {A(a), A(a)} = A(a) 
That is, A(a) = A(a2) and A(a) = A(a2) 
This proves the theorem. 
Definition 3.18. A semigroup S is called left 
(resp.right) regular if, for each element a of  
S, there exists an element x in S such that a = 
xa2 (a = a2x). 
Theorem3.19. Let S be left regular. Then, 
every intuitionistic fuzzy left ideal of S is 
intuitionistic fuzzy semiprime.  
Proof.  Let A = <A, A> of be an  intuitionistic 
fuzzy left ideal of S and let a  S. Then, there 
exists an element x in S such that a = xa2 since 
S is left regular. So, we have A(a) = A(xa2) ≥ 
A(a2) and A(a) = A(xa2) ≤ A(a2). 
This proves the theorem. 
Definition3.20. A semigroup S is called intra-
regular if, for each element a of S, there exist 
elements x and y in S such that a = xa2y.  
Theorem3.21. Let A = <A, A> be an  
intuitionistic fuzzy  ideal of S. If S is intra-
regular, then A is intuitionistic fuzzy 
semiprime.   
Proof.  Let a be any element of S. Then, since S 
is intra regular, there exist x and y in S  

such that a = xa2y. So, we have A(a) = 
A(xa2y)  ≥ A(a2y) ≥ A(a2) and                   
A(a) = A(xa2y) ≤ A(a2y) ≤ A(a2) 
This proves the theorem. 
Theorem3.22. Let A = <A, A> be an  
intuitionistic fuzzy interior  ideal of S. If S is 
Intra- regular, then A is intuitionistic fuzzy 
semiprime. 
Proof.  Let a  S. Then since S is intra-regular, 
there exist x and y in S such that a = xa2y, So 
we have A(a) = A(xa2y) ≥ A(a2) and A(a) = 
A(xa2y) ≤ A(a2). 
This proves the theorem. 
Definition 3.23. A semigroup S is called 
Archimedean if, for any elements a, b, there 
exists a   
positive integer n such that an  SbS. 
Theorem3.24. Let S be an Archimedean 
semigroup. Then, every intuitionistic fuzzy 
semiprime fuzzy ideal of S is a constant 
function. 
Proof.  Let A = <A, A> be any  intuitionistic 
fuzzy semiprime ideal of S and a, b  S . 
Then since S is Archimedean, there exist x and 
y in S such that an = xby for some integer n. 
Then, we have    A(a) = A(an) = A(xby)  ≥ 
A(b) and 
           A(b) = A(bn) = A(xay)  ≥ A(a) 
Thus we obtain A(a) = A(b)  
Also, we have A(a) = A(an) = A(xby)  ≤ A(b) 
and 
           vA(b) = A(bn) = A(xay) ≤ A(a) 
Therefore we have A(a) = A(b) for all a, b  S. 
This proves the theorem. 
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