

INTUITIONISTIC FUZZY SEMIPRIME IDEALS IN SEMIGROUPS

Dr. Lalithamani. N¹, Dr. Kiruthika.K², Dr.Fekadu Yemataw³ ¹Lecturer, Department of Mathematics, Wollega University, Nakamta Ebiopia

Nekemte, Ehiopia.

 ²Associate Professor, Department of Mathematics, K.S.R.College of Technology, Tiruchengode, TN, India
³Lecturer, Depatment of Mathematics, Wollega University, Nekemte, Ehiopia

Abstract

In this paper, we introduce the notion of intuitionistic fuzzy semiprimality in a Semigroup which is an extension of fuzzy semiprimality and investigate some of their related properties.

Keywords: Intuitionistic fuzzy semigroup, intuitionistic fuzzy ideal, intuitionistic fuzzy

bi-ideal, intuitionistic fuzzy semiprime, intuitionistic fuzzy leftsimple.

Mathematics Subject Classification (2000): 20M12, 04A72.

1. Introduction

After the introduction of fuzzy sets by L. A. Zadeh[9], the fuzzy set theories have found many applications in the domain of mathematics. The concept of intuitionistic fuzzy sets was introduced by K. T. Atanassov[1, 2], as a generalization of the notion of fuzzy sets.

N. Kuroki[5] introduced and studied fuzzy ideals and fuzzy bi-ideals in semigroups. In this paper, we consider the intuitionistic fuzzification of the concept of a semiprime ideal in a semigroup and some properties of such ideals are investigated.

2.Preliminaries

Let S be a semigroup. By a subsemigroup we mean a non-empty subset A of S such that

 $A^2 \subseteq A$, and by a left(right) ideal of S we mean a non-empty subset A of S such that $SA \subseteq A$ (AS $\subseteq A$). By two sided ideal or simply ideal, we mean a non-empty subset of S which is both a left and a right ideal of S. A subsemigroup A of a semigroup S is called a bi-ideal of S if ASA \subseteq A. A semigroup S is said to be right (resp.left) zero if xy = y (xy = x) for all x, $y \in$ S. A semigroup S is said to be regular if for each $x \in S$, there exists $y \in S$ such that x = xyx. A semigroup S is said to left (resp.right) simple if S itself is the only left (resp.right) ideal of S.

A mapping $\mu: S \to [0, 1]$ is called a fuzzy set of S and the complement μ is a fuzzy set in S given by $\mu(x) = 1 - \mu(x)$ for all $x \in S$.

An intuitionistic fuzzy set (IFS) A in a non empty set X is an object having the form

A = { $<x, \mu_A(x), \nu_A(x) > / x \in X$ }, where the functions $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ denote the degree of membership and the degree of non membership of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for all $x \in X$.

Notation: For the sake of simplicity, we shall use the symbol $A = \langle \mu_A, \nu_A \rangle$ for the

IFS $A = \{ <x, \mu_A(x), \nu_A(x) > / x \in X \}.$

3. Intuitionistic fuzzy semiprime ideals

In what follows, let S denote a semigroup unless otherwise specified.

Definition 3.1. Let A be an IFS in X and let $t \in [0, 1]$. Then the sets

 $\begin{array}{l} U(\mu_A \ ; \ t) = \{x \in X : \mu_A(x) \geq t\} \ \text{and} \ L(\nu_A ; \ t) = \\ \{x \in X : \nu_A(x) \leq t\} \ \text{are called a} \ \mu \ \text{-level t-cut} \\ \text{and} \quad \nu \text{-level t-cut of } A, \ \text{respectively.} \end{array}$

Definition 3.2. Let A be an intuitionistic fuzzy set of a set X. For each pair $\langle t, s \rangle \in [0, 1]$, the set $A_{\langle t, s \rangle} = \{x \in X : \mu_A(x) \ge t \text{ and } \nu_A(x) \le s\}$ is called the level subset of A.

Definition 3.3. An IFS A = $\langle \mu_A(x), \nu_A(x) \rangle$ in S is called an intuitionistic fuzzy subsemigroup of S if

(i) $\mu_A(xy) \ge \min \{\mu_A(x), \mu_A(y)\},\$

(ii) $v_A(xy) \le \max \{v_A(x), v_A(y)\}$, for all $x, y \in S$.

Definition 3.4. An intuitionistic fuzzy Γ subsemigroup A = $\langle \mu_A(x), \nu_A(x) \rangle$ in S is called an intuitionistic fuzzy left ideal of S if

- (i) $\mu_A(xy) \ge \mu_A(y)$,
- (ii) $v_A(xy) \le v_A(y)$ for all $x, y \in S$.

Definition 3.5. An intuitionistic fuzzy subsemigroup $A = \langle \mu_A(x), \nu_A(x) \rangle$ in S is called an intuitionistic fuzzy bi- ideal of S if

- (i) $\mu_A(xwy) \ge \min \{\mu_A(x), \mu_A(y)\},\$
- (ii) $v_A(xy) \le \max \{v_A(x), v_A(y)\}$ for all w, x, y \in S.

Example3.6. Let $S = \{a, b, c, d, e\}$ be a semigroup with the following Cayley table:

	a	b	c	d	e
a	a	a	а	а	a
b	а	а	а	а	а
c	а	а	c	с	e
d	а	а	c	d	e
e	а	а	c	с	e

Clearly S is a semigroup. Define an IFS A = $\langle \mu_A, \nu_A \rangle$ in S by $\mu_A(a) = 0.6$, $\mu_A(b) = 0.5$,

 $\mu_A(c) = 0.4$, $\mu_A(d) = \mu_A(e) = 0.3$ and $\nu_A(a) = \nu_A(b) = 0.3$, $\nu_A(c) = 0.4$, $\nu_A(d) = 0.5$ $\nu_A(d) = 0.6$. By routine calculation we can check that A is an intuitionistic fuzzy bi-ideal of S.

Definition3.7. A semigroup S is said to be intuitionistic fuzzy left simple if every

intuitionistic fuzzy left ideal of S is constant.

Theorem 3.8. If S is left simple, then S is intuitionistic fuzzy left simple.

Proof. Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy left ideal of S and a, $b \in S$.

Since S is left simple, it follows from [3, p.6] that there exist elements x and y in S such that

b = xa and a = yb. then

 $\mu_A(a) = \mu_A(yb) \ge \mu_A(b) = \mu_A(xa) = \mu_A(a)$ and $\nu_A(a) = \nu_A(yb) \le \nu_A(b) = \nu_A(xa) = \nu_A(a)$

So $\mu_A(a) = \mu_A(b)$ and $\nu_A(a) = \nu_A(b)$. Thus A(a) = A(b), which means A is a constant function because a and b are any elements of S. Therefore, S is intuitionistic fuzzy left simple.

Definition 3.9. An intuitionistic fuzzy subsemigroup $A = \langle \mu_A, \nu_A \rangle$ of S is called an intuitionistic fuzzy interior ideal of S if

(i) $\mu_A(xay) \geq \mu_A(a)$,

(ii) $v_A(xay) \le v_A(a)$ for all x, y, $a \in S$.

Theorem 3.10. If S is simple, then every intuitionistic fuzzy interior ideal of S is constant.

Proof. Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy left ideal of S and a, $b \in S$. Since S is simple, it follows from [7, Lemma 1.3.9] that there exist elements x and y in S such that a = xby. Since A is an intuitionistic fuzzy interior ideal of S, we have $\mu_A(a) = \mu_A(xby) \ge \mu_A(b)$ and $\nu_A(a) = \nu_A(xby) \le \nu_A(b)$. It can be seen in a similar way that $\mu_A(b) \ge \mu_A(a)$ and $\nu_A(b) \le \nu_A(a)$. Since a and b are arbitrary elements, this means that A is a constant function.

Theorem 3.11. If S is left simple, then every intuitionistic fuzzy bi-ideal of S is an intuitionistic fuzzy right ideal of S.

Proof. Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy bi- ideal of S and let $a, b \in S$.

Since S is simple, there exists $x \in S$ such that b = xa. Since A is an intuitionistic fuzzy

bi- ideal of S, it follows that

 $\label{eq:main_alpha} \begin{array}{l} \mu_A(ab) = \mu_A(axa) \geq min \ \{\mu_A(a), \ \mu_A(a)\} = \\ \mu_A(a) \ and \end{array}$

$$\nu_A(ab) = \nu_A(axa) \le \max \{\nu_A(a), \nu_A(a)\} = \nu_A(a)$$

So A is an intuitionistic fuzzy right ideal.

Definition3.12. A subset A of a semigroup S is called semiprime if $a^2 = a$ imply $a \in A$ for all $a \in S$.

Definition3.13. An IFS A = $\langle \mu A, \nu_A \rangle$ is called intuitionistic fuzzy semiprime if

- (i) $\mu_A(x) \ge \mu_A(x^2)$,
- (ii) $v_A(x) \le v_A(x^2)$ for all $x \in S$.

Example3.14. Let $S = \{o, e, f, a, b\}$ be a set with the following Cayley table:

	0	e	f	a	b
0	0	0	0	0	0
e	0	e	0	а	0
f	0	0	f	0	b
а	0	а	0	0	e
b	0	0	b	f	0

Clearly S is a semigroup. Define an IFS A = $\langle \mu_A, \nu_A \rangle$ in S by $\mu_A(e) = \mu_A(f) = 1$,

 $\mu_A(a) = \mu_A(b) = \mu_A(o) = 0$ and $\nu_A(e) = \nu_A(f) = 0$, $\nu_A(a) = \nu_A(b) = \nu_A(o) = 1$. By routine

calculation A is an intuitionistic fuzzy semiprime of S.

Theorem 3.15. If A is semiprime, then (χ_A, χ_A) is intuitionistic fuzzy semiprime.

Proof. Let $a \in S$. If $a^2 \in A$, then since A is semiprime, we have $a \in A$. Thus $\chi_A(a) = 1 \ge \chi_A(a^2)$ and $\overline{\chi}_A(a) = 1 - \chi_A(a) \le 1 - \chi_A(a^2)$ $= \overline{\chi}_A(a^2)$. If $a^2 \notin A$, then we have $\chi_A(a^2) = 0$. Therefore $\chi_A(a) \ge 0 = \chi_A(a^2)$ and $\overline{\chi}_A(a^2) = 1 - \chi_A(a^2) \ge 1 - \chi_A(a) = \overline{\chi}_A(a)$.

This proves the theorem.

Theorem 3.16. Let A be a non-empty subset of S. If $(\chi_A, \overline{\chi}_A)$ is intuitionistic fuzzy semiprime, then A is semiprime.

Proof. Let $(\chi_A, \overline{\chi}_A)$ be intuitionistic fuzzy semiprime and let $\underline{a}^2 \in A$ Then $\chi_A(a) \ge \chi_A(a^2) = 1$. So $a \in A$, $\overline{\chi}_A(a) \le \overline{\chi}_A(a^2) = 1 - \chi_A(a^2) = 1 - 1 = 0$. That is, $\chi_A(a) = 1$. This shows that $a \in A$.

This proves the theorem.

Theorem 3.17. For any intuitionistic fuzzy subsemigroup $A = \langle \mu A, \nu A \rangle$ of S, if A is intuitionistic fuzzy semiprime, then $A(a) = A(a^2)$.

Proof. Since A is intuitionistic fuzzy semiprime of S, we have

 $\mu_A(a) \ge \mu_A(a^2) = \min \{\mu_A(a), \mu_A(a)\} = \mu_A(a)$ $\nu_A(a) \ge \nu_A(a^2) = \max \{\nu_A(a), \nu_A(a)\} = \nu_A(a)$ That is, $\mu_A(a) = \mu_A(a^2)$ and $\nu_A(a) = \nu_A(a^2)$ This proves the theorem.

Definition 3.18. A semigroup S is called left (resp.right) regular if, for each element a of

S, there exists an element x in S such that $a = xa^2 (a = a^2x)$.

Theorem3.19. Let S be left regular. Then, every intuitionistic fuzzy left ideal of S is intuitionistic fuzzy semiprime.

Proof. Let $A = \langle \mu A, \nu A \rangle$ of be an intuitionistic fuzzy left ideal of S and let $a \in S$. Then, there exists an element x in S such that $a = xa^2$ since S is left regular. So, we have $\mu A(a) = \mu A(xa^2) \ge \mu A(a^2)$ and $\nu A(a) = \nu A(xa^2) \le \nu A(a^2)$.

This proves the theorem.

Definition3.20. A semigroup S is called intraregular if, for each element a of S, there exist elements x and y in S such that $a = xa^2y$.

Theorem3.21. Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy ideal of S. If S is intraregular, then A is intuitionistic fuzzy semiprime.

Proof. Let a be any element of S. Then, since S is intra regular, there exist x and y in S

such that $a = xa^2y$. So, we have $\mu_A(a) = \mu_A(xa^2y) \ge \mu_A(a^2y) \ge \mu_A(a^2)$ and $\nu_A(a) = \nu_A(xa^2y) \le \nu_A(a^2y) \le \nu_A(a^2)$ This proves the theorem.

Theorem3.22. Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy interior ideal of S. If S is Intra- regular, then A is intuitionistic fuzzy semiprime.

Proof. Let $a \in S$. Then since S is intra-regular, there exist x and y in S such that $a = xa^2y$, So we have $\mu_A(a) = \mu_A(xa^2y) \ge \mu_A(a^2)$ and $\nu_A(a) = \nu_A(xa^2y) \le \nu_A(a^2)$.

This proves the theorem.

Definition 3.23. A semigroup S is called Archimedean if, for any elements a, b, there exists a

positive integer n such that $a^n \in SbS$.

Theorem3.24. Let S be an Archimedean semigroup. Then, every intuitionistic fuzzy semiprime fuzzy ideal of S is a constant function.

Proof. Let $A = \langle \mu_A, \nu_A \rangle$ be any intuitionistic fuzzy semiprime ideal of S and $a, b \in S$.

Then since S is Archimedean, there exist x and y in S such that $a^n = xby$ for some integer n. Then, we have $\mu_A(a) = \mu_A(a^n) = \mu_A(xby) \ge \mu_A(b)$ and

 $\mu_A(b) = \mu_A(b^n) = \mu_A(xay) \ge \mu_A(a)$

Thus we obtain $\mu_A(a) = \mu_A(b)$

Also, we have $v_A(a) = v_A(a^n) = v_A(xby) \le v_A(b)$ and

 $v_A(b) = v_A(b^n) = v_A(xay) \le v_A(a)$

Therefore we have A(a) = A(b) for all $a, b \in S$. This proves the theorem.

REFERENCES

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems 20(1) (1986), 87-96.
- [2] K. T. Atanassov, New operations defined over intuitionistic fuzzy sets, Fuzzy sets and Systems 61(1994), 137-142.
- [3] A. H. Clifford and G. B. Preston, 1961, the algebraic theory of semigroups, American Math. Soc., providence, RI,I.
- [4] K. H. Kim, On intuitionistic Q-fuzzy Semiprime ideals in Semigroups, Advances in fuzzy mathematics,Vol.1(2006)15-21.

- [5] N. Kuroki, On fuzzy ideals and fuzzybi-ideals in Semigroups, Fuzzy sets and systems 5(1981) 203-215.
- [6] N. Kuroki. Fuzzy semiprime ideals in Semigroups, Fuzzy sets and systems 8(1982)71-79.
- [7] M.Petrich, 1973, Introduction to semigroups, Merril, Columbus, OH.
- [8] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35(1971) 512-517.
- [9] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.