

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

17

MACHINE LEARNING ON EVENT STREAMS IN A

DISTRIBUTED ENVIRONMENT BY A STREAMLEARNER
Balaji T1, Mohamed Yousuff A R2, Abdul Naseer M3 , Nandakumar P4 , Fathima Begum M5

1,2,3,4,5Assistant Professor, Computer Science and Engineering
1,2,3,4,5 C.Abdul Hakeem College Of Engineering And Technology

Abstract
Today, gigantic measures of gushing
information from keen gadgets should be
investigated consequently to understand the
Internet of Things. The Complex Event
Processing (CEP) worldview guarantees low-
dormancy design discovery on occasion
streams. Be that as it may, CEP frameworks
should be stretched out with Machine
Learning (ML) capacities, for example,
internet preparing and derivation so as to
have the capacity to identify fluffy examples
(e.g. exceptions) and to enhance design
acknowledgment exactness amid runtime
utilizing incremental model preparing. In this
paper, we propose a disseminated CEP
framework indicated as Stream Learner for
ML-empowered complex occasion discovery.
The proposed programming model and
information parallel framework design
empower an extensive variety of genuine
applications and take into account
progressively scaling up and out framework
assets for low-inactivity, high-throughput
occasion master cessing. We demonstrate that
the DEBS Grand Challenge 2017 contextual
investigation (i.e., oddity discovery in savvy
processing plants) coordinates consistently
into the StreamLearner API. Our tests
confirm versatility and high occasion
throughput of Stream Learner.
Keywords: Complex Event Processing,
Machine Learning, Stream Processing

1 INTRODUCTION AND BACKGROUND
As of late, the surge of Big Streaming Data being
accessible from sensors [12], interpersonal
organizations [17], and brilliant urban
communities [3], has prompted a move of ideal

models in information investigation all through
all controls. Rather than bunch arranged
handling [8, 14, 15], stream-situated information
examination [7] is turning into the highest
quality level. This has prompted the
advancement of versatile stream preparing
frameworks that execute the social inquiry model
of social information base administration
frameworks (RDBMS) as nonstop questions on
occasion streams [2], and Complex Event
Processing systems that implement pattern
matching on event streams [6]. Inquiry driven
stream handling, in any case, requests a space
master to indicate the examination rationale in a
deterministic question language with an inquiry
that precisely de nes which input occasions are
changed into which yield occasions by an
administrator.
In any case, an unequivocal speci cation isn't
generally conceivable, as the space master may
rather be keen on a more dynamic question, for
example, "Re-port me all inconsistencies that
embellishment machine 42 encounters on the
shop oor." In this case, it is infeasible to
expressly determine all occasion designs that can
be viewed as a peculiarity.
There have been di erent recommendations how
to manage this issue. EP-SPARQL utilizes
foundation ontologies to enable (com-plex)
occasion handling frameworks with stream
thinking [1] – while concentrating on the
SPARQL question dialect. Then again, sev-eral
broadly useful frameworks for stream handling
exist, for example, Apache Kafka [11], Apache
Flink [4], Apache Storm [19], Apache Spark
Streaming [22]. Despite the fact that these
frameworks are effective and non specific, they
are not custom fitted towards parallel and

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

18

adaptable incre-mental model preparing and
induction on occasion streams

In the meantime, an expanding assortment of
research addresses incre-mental (or on the web)
updates of Machine Learning (ML) models:
there are incremental calculations for a wide
range of ML systems, for example, bolster vector
machines [5], neural systems [9], or Bayesian
models [21]. Plainly, a stream preparing
structure supporting natural reconciliation of
these calculations would be exceedingly
beneficial– sparing the expenses of employing
costly ML specialists to move these calculations
to the stream handling frameworks.

A structural plan and programming interface for
information parallel CEP that takes into
consideration simple incorporation of exist-ing
incremental ML calculations (cf. Area 3).

An algorithmic answer for the issues of
incremental K-Means bunching and Markov
display preparing with regards to peculiarity
recognition in savvy manufacturing plants (cf.
Area 4).

An assessment demonstrating versatility of the
StreamLearner engineering and throughput of up
to 500 occasions for every second utilizing our
calculations for incremental ML display
refreshes (cf. Segment 5).

2. CHALLENGES AND GOALS
Machine Learning calculations prepare a model
utilizing a given arrangement of preparing
information, e.g., building bunches, and after
that apply the prepared model to take care of
issues, e.g., ordering obscure occasions. Over the
span of spilling information getting to be
noticeably accessible from sensors, models
should be powerfully adjusted. That implies, that
new information is considered in the scholarly
model, while old information "grows dim" and
leaves the model as it ends up noticeably
insignificant. This can be displayed by a sliding
window over the approaching occasion streams:
Events inside the window are significant for the
model preparing, though occasions that drop out
of the window end up plainly superfluous and
ought not be re ected in the model any more.
Machine Learning on sliding windows is
otherwise called non-stationary Machine
Learning, i.e., the issue of keeping a model

refreshed as the fundamental gushing
information gen-eration "process" underlies a
changing likelihood appropriation. To adjust the
ML demonstrate on the web, there are di erent
potential outcomes. For in-position, incremental
calculations change the model in a well ordered
manner. The test in doing as such is to help
incremental professional cessing – i.e., gushing
learning. The model ought not be re-worked sans
preparation for each new window, but instead
incrementally be refreshed with new information
while old information is expelled

Another test in ML in spilling information is that
information from di erent streams may prompt
autonomous models. For example, information
caught in one generation machine won't not be
reasonable to prepare the model of another
creation machine. The test is to figure out which
autonomous models should be fabricated in light
of which information from which approaching
occasion streams. Further, the inquiry is the
manner by which to course the comparing
occasions to the suitable model. At the point
when these inquiries are explained, the identi ed
machine learning models can be worked in
parallel – empowering versatile, low-inertness,
and high-throughput stream preparing.

3 STREAM LEARNER
In this area, we rst give an outline about the
StreamLearner engineering, trailed by a
portrayal of the simple to-utilize API for
incremental machine learning and circumstance
induction models.

3.1 System Overview
The design of StreamLearner is given in Figure
1. Keeping in mind the end goal to paralleliz

e ML-based calculation, we have broadened the
part procedure combine engineering of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

19

conventional occasion based frameworks [16–
18]. The splitter gets occasions by means of the
occasion input stream and advances them to free
preparing units, signified as tube-operations, as
per its part rationale. Each tube-operation
molecularly performs ML-based incremental
stream preparing by perusing an occasion from
the in-line, preparing the occasion, and sending
the yield occasion to the merger. The merger
chooses about the nal occasions on the occasion
yield stream (e.g. sorts the occasions from the di
erent tube-operations by timestamp to give a
reliable requesting of the occasion yield stream).
Because of the free handling of occasions, the
design underpins both, scale-up operations by
bringing forth more strings per machine and
scale-out operations by including more
machines.

Each tube-operation forms an occasion in three
stages: molding, prepare ing, and derivation. In
the molding stage, it performs stateless pre-
handling operations ω1 and ω2 (meant as shaper)
to change the info occasion into proper
arrangements. In the preparation stage, the
stateful mentor module incrementally refreshes
the model parame-ters of model M (e.g. a neural
system in Figure 1) as per the client speci ed
display refresh work. In the deduction stage, the
refreshed model and the preprocessed occasion
fill in as a contribution for the stateful indicator
playing out a client de ned derivation operation
and changing the refreshed model and the info
occasion to a yield occasion with the model-
driven forecast.

Note that the StreamLearner API does not limit
application software engineers to perform
preparing and surmising on di erent occasion
information. Henceforth, application software
engineers are allowed to utilize either disjoint
subsets, or crossing subsets of occasions in the
stream for preparing and derivation. In spite of
the fact that it is normal practice in ML to isolate
information that is utilized for preparing and
derivation, despite everything we give this ex-
ibility, as in genuine streams we may utilize a
few occasions for both, fusing changing
examples into the ML demonstrate and starting a
deduction occasion utilizing the indicator. In any
case, the application software engineer can
likewise isolate preparing and surmising
information by de n-ing the administrators in the

tube-operation appropriately (e.g. creating a fake
occasion as contribution for the indicator to show
that no induction step ought to be performed).
Besides, the application program-mer can
likewise determine whether the preparation
ought to occur before induction or the other way
around.

3.2 Programming Model
The application developer speci es the
accompanying capacities keeping in mind the
end goal to utilize the StreamLearner structure in
a disseminated environ-ment

3.2.1 Spli er. Given an occasion ei , the
application developer de nes a stateful part work
split¹ei º that profits a tuple.¹mid; tid; ei º de ning
the tube-operation tid on machine mid that gets
occasion ei .

3.2.2 Shaping. The stateless shaper operations
ω1¹ei º and ω2¹ei º return modi ed occasions ei1
and ei2 that fill in as contribution for the coach
and the indicator module. The default shaper
plays out the character operation.

3.2.3 Trainer. The stateful coach operation
mentor ¹ei1º restores a reference to the refreshed
model question M 0. The application star
grammer can utilize any kind of machine
learning model as long as the model can be
utilized for deduction by the indicator. On the off
chance that the model M stays unaltered in the
wake of handling occasion ei1, the coach must
restore a reference to the unaltered model M with
a specific end goal to trigger the indicator for
every occasion. StreamLearner plays out a
postponing technique when the application
software engineer favors surmising before
learning. For this situation, the tube-operation rst
executes the indicator on the old model M and
executes the mentor a short time later to refresh
the model.

3.2.4 Predictor. The stateful indicator gets a
reference to display M 0 and information
(occasion) ei2 and restores the anticipated
occasion

e3 = indicator M 0; e2 i¹i º

3.2.5 Merger. The stateful merger gets
anticipated yield occasions from the tube-
operations and returns an arrangement of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

20

occasions that is put to the occasion yield stream,
i.e., merger ¹ei3º = f ¹e03; :::; ej3; :::; ei3º for j <
I and any capacity f . Any aggregator work,
occasion requesting plan, or ltering technique
can be executed by the merger.

4 CASE STUDY: ANOMALY DETECTION
IN SMART FACTORIES

In this area, we epitomize use of our
Stream Learner API based on a reasonable
utilize case for information investigation
postured by the DEBS Grand Test 20171 [10].

4.1 Problem Description
In brilliant industrial facilities, distinguishing
failing of generation machines is critical to
empower programmed disappointment
rectification and convenient responses to
bottlenecks in the generation line. The objective
of this contextual investigation is to distinguish
irregularities, i.e., unusual successions of sensor
occasions evaluating the condition of the
generation machines. Specifically, the input
occasion stream comprises of occasions
transporting estimations from an arrangement of
generation machines P to an irregularity
identification administrator. The occasions are
made by the arrangement of sensors S that screen
the creation machines.We incorporate the time
stamps of each deliberate sensor occasion by
dening an arrangement of discrete time steps DT
. Every occasion ei = ¹pi ;di ; si ; ti º comprises of
a generation machine id pi 2 P that was checked,
a numerical information esteem di 2 R measuring
the state of the generation machine (e.g.
temperature, weight, disappointment rate), a
sensor with id si 2 S that has created the occasion,
and a period stamp ti 2 DT putting away the
occasion creation time.

The abnormality identification administrator
needs to pass three phases for each occasion
producing sensor (cf. Figure 2).

To start with, it gathers all occasions ei that were
created inside the last W time units (meant as
occasion window) and groups the occasions ei
utilizing the K-implies calculation on the
numerical information esteems di for at any rate
M cycles. The standard K-implies calculation
iteratively relegates every occasion in the
window to its nearest bunch focus (with regard
to euclidean separation) and recalculates each
group focus as the centroid of every single
alloted occasion's numerical information
esteems (in the tailing we don't dierentiate
amongst occasions and their information values).
In the gure, there are ve occasions e5; e6; e7; e8;
e9 in the occasion window that are grouped into
three bunches C1;C2;C3. With this strategy, we
can describe every occasion as indicated by its
state, i.e., the bunch it is appointed to.

Second, the administrator prepares a rst-
arrange Markov show all together to differentiate
ordinary from unusual occasion arrangements. A
Markov show is a state chart, where a likelihood
esteem is related to each state progress. The
likelihood of a state change depends just on the
present state and not on past state advances
(autonomy suspicion). These probabilities are
kept up in a progress grid T utilizing the
accompanying strategy: (I) The Markov
display comprises of K states, one state for each
group. Every occasion is thought to be in the
condition of the group it is doled out to. (ii) The
occasions are requested concerning their
opportunity stamp – from most established to
most youthful. Ensuing occasions are seen as
state advances. In Figure 2, the occasions can be
arranged as »e5; e6; e7; e8; e9¼. The particular
state advances are C2 ! C3 ! C2 ! C2 ! C1. (iii)
The change lattice contains the probabilities of
state advances between any two states, i.e., group
focuses. The likelihood of two resulting
occasions being in bunch Ci and progress into
group Cj for all I; j 2 f1; :::;Kg is the relative
number of these perceptions. For instance the
likelihood of change from state C2 to
state C1 is the quantity of occasions in state C2
that change to state C1 partitioned by the
aggregate number of advances from state C2,
i.e.,
P¹C1 jC2º = #C2!C1 #C2!? = 1 3.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

21

Third, an abnormality is dened utilizing the
likelihood of a grouping of watched changes
with length N. Specifically, if a progression of
impossible state changes is watched, i.e., the
aggregate grouping likelihood is underneath the
limit , an occasion is produced that demonstrates
whether an abnormality has been found. The
likelihood of the grouping can be figured by
breaking the grouping into single state advances,
i.e., in Figure 2, P¹C2 !C3 !C2 !C1º = P¹C2
!C3ºP¹C3 ! !C2ºP¹C2 !C1º. Utilizing the
autonomy presumption of Markov models, we
can dole out a likelihood incentive to each
grouping of state progress and henceforth
evaluate the probability

4.2 Formulating the Problem in the Stream
Learner API
 The situation is pleasantly into the
StreamLearner API: for every sensor, a free ML
demonstrate is liable to incremental preparing
furthermore, induction steps. Along these lines,
each string in the StreamLearner Programming
interface is in charge of all perceptions of a
solitary sensor empowering StreamLearner to
screen various sensors in parallel.

4.2.1 Splitter: The splitter gets an occasion ei =
¹pi ;di ; s; ti º what's more, doles out the occasion
only to the string that is in charge of sensor s (or
starts formation of this mindful string in the
event that it doesn't exist yet). It utilizes a
straightforward hash delineate sensor ids to
string ids to furnish string determination with
steady time multifaceted nature amid preparing
of the information occasion stream. With this
strategy, we break the info stream into various
autonomous sensor occasion streams (one stream
for every sensor).

4.2.2 Shaper: Shapers !1 and !2 are basically
character administrators that pass the occasion
without changes to the separate preparing or
expectation modules.

4.2.3 Trainer: The coach keeps up and refreshes
the model in an incremental mold. The model is
denied by means of the progress matrixT that is
figured utilizing K-implies grouping and the
separate state change arrangement.

Incremental K-Means.

The objective is to iteratively allot every
occasion to the nearest group focus and
recalculate the bunch focus as the centroid of
every single allocated occasion. The standard
approach is to perform M cycles of the K-implies
grouping calculation for all occasions in the
occasion window when activated by the landing
of another occasion. Be that as it may, this
technique brings about problematic runtime due
to superfluous calculations that emerge in down
to earth settings
A solitary new occasion in the occasion window
will once in a while have a worldwide effect to
the bunching. Specifically, generally
assignments of occasions to bunches stay
unaltered after adding another occasion to the
occasion window. In this way, the animal power
strategy for full reclustering can bring about
colossal computational redundancies.
Performing M emphasess is superfluous, if the
grouping has just united in a before emphasis M0
< M. Plainly, we ought to end the calculation as
quick as could be allowed.
The one-dimensional K-implies issue is on a
very basic level simpler than the standard NP-
hard K-implies issue: an ideal arrangement can
be figured in polynomial time O¹n2Kº for xed
number of groups K and number of occasions in
the window n [13, 20]. In this way, utilizing a
universally useful K-implies calculation that
backings discretionary dimensionality can bring
about superfluous overhead (the exchange
obetween sweeping statement, execution, and
optimality).
This is represented in Figure 3. There are four
bunches C1; :::;C4 furthermore, occasions e5; :::;
e9 in the occasion window. A newevent e10 is
arriving. Rather than recomputation of the entire
bunching in every cycle, i.e., ascertaining the
separation between every occasion and bunch
focus, we touch just occasions that are possibly
aected by a difference in the bunch focuses. For
instance, occasion e10 is appointed to group C4
which prompts another group focus C04

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

22

. In any case, the following nearest occasion e6
(left side) keeps a similar group focus C3. Our
essential thinking is that every occasion on the
left half of the unaltered occasion e6 keeps its
bunch focus as there can be no unsettling
influence in the type of changed bunch focuses
left-hand of e6 (just a falling group focus move
is conceivable as C4 C3 C2 C1 in any stage of
the calculation). A comparable argumentation
can be made for the right side and furthermore
for the expulsion of occasions from the window.

This thought vigorously uses the likelihood of
arranging group focuses furthermore, occasions
in the one-dimensional space. It diminishes
normal runtime of a solitary cycle of K-implies
as much of the time as it were a little subset of
occasions must be gotten to. Joined with the
streamlining of skipping further calculation after
union in cycle M0 < M, incremental updates of
the grouping can be substantially more ecient
than guileless reclustering. The incremental one-
dimensional bunching strategy is in a similar
many-sided quality class as credulous
reclustering as in the most pessimistic scenario,
we need to reassign all occasions to new bunches
(the arranging of occasions takes just logarithmic
runtime many-sided quality in the occasion
window measure per inclusion of a new occasion
– henceforth the multifaceted nature is
commanded by the K-implies calculation).

4.2.4 Predictor. The pointer module applies the
inducing step on the changed model for each
moving toward event. In this circumstance,
enlistment is done through the Markov appear
(i.e., the advance matrix T) to choose if an
irregularity was recognized or not. We use the
change network to assign a probability
motivating force to a course of action of events
with related states (i.e., aggregate core interests).
The brute oblige procedure would process the
consequence of state advance probabilities for
each gathering of length N and difference it and
the probability confine . Regardless, this prompts
various overabundance estimations for coming
about events. We display an upgraded
incremental method in Figure 4. The event
window contains events e1; :::; e8 masterminded
by time stamps.

Every occasion is alloted to a group C1 or C2
bringing about an arrangement of state changes.
We utilize the change network of the Markov
model to decide the likelihood of each state
change. We ascertain the likelihood of the state
change arrangement as the result of all state
advances (the state autonomy property of
Markov models). For example the likelihood of
the rst three state advances is = P¹C1 jC1º
 P¹C2 jC1º
 P¹C2 jC2º = 1 3
 2 3
 3 4 = 1 4 which
is bigger than the edge = 0:1. Presently we can
without much of a stretch figure the likelihood of
the following state progress grouping of length N
by isolating by the rst progress likelihood of the
grouping (i.e., P¹C1 jC1º = 1 3) and duplicating
with the likelihood of the new state change (i.e.,
P¹C2 jC2º = 3 4). Thus, the aggregate
likelihood 0 of the following state change
succession is 0 = 1 3
 3 4 = 9 16 > .
This strategy lessens the quantity of
augmentations to N +2¹W �Nº as opposed to
N¹W �Nº. At long last, the indicator issues an
irregularity discovery occasion to the merger
(Yes/No).

4.2.5 Merger. The merger sorts all oddities
occasions w.r.t. time stamp to guarantee a
predictable yield occasion stream utilizing the
same system as in GraphCEP [17]. This strategy
guarantees a monotonic increment of occasion
time stamps in the yield occasion stream.

5 EVALUATIONS
In this area, we give our examinations Stream
Learner on the DEBS Grand Challenge 2017
informational collection with 50,000 sensor
information occasions.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

23

Exploratory Setup:
We utilized the accompanying two processing
situations. (I) A scratch pad with 43:5 GHz (8
strings, Intel Core i7-4710MQ), 8 GB RAM (L1
Cache 256 KB, L2 Cache 1024 KB, L3 Reserve
6144 KB), and 64 Bit bolster. (ii) An in-house
shared memory framework with 32 2:3 GHz
(Quad-Core AMD Opteron(tm) Processor 8356),
and 280 GB RAM (L1d reserve 64 KB, L1i store
64 KB, L2 reserve 512 KB, L3 store 2048 KB),
and 64 Bit bolster.

Adjusting the window sizeW:

In Figure 5a, we demonstrate the outright
throughput of StreamLearner on the y-pivot and
dierent window sizesW on the x-pivot utilizing
the note pad for a dierent number of strings.
Unmistakably, bigger window measure prompts
bring down throughput as computational
overhead develops. We standardized this
information in Figure 5c to the interim »0; 100¼
to think about the relative throughput upgrades
for the different number of strings.

 Unmistakably, the bene t of multi-

threading emerges just for bigger window sizes
due to the consistent dissemination overhead that
can not be repaid by expanded parallelism on the
grounds that each string has just minimal
computational assignments between purposes of
synchronization (on the splitter and on the
merger). General adaptability is estimated in
Figure 5a. It can be seen that StreamLearner
scales best for information parallel issues with
generally little synchronization overhead in
contrast with the computational assignment. For
little window sizes (e.g.W = 10), throughput does
not increment with expanding number of
laborers. Be that as it may, for direct to huge
window sizes, scaling the quantity of laborer
strings increasingly affects the relative
throughput: scaling from one to nine strings
expands throughput by 2:5.

In Figure 6a, we rehashed the test on the
mutual memory framework. The rst perception is
that the single strung tests are four times slower
contrasted with the scratch pad foundation
because of the more seasoned equipment. All
things considered, in Figure 6b, we can see
obviously that the relative throughput diminishes
when utilizing a low as opposed to a high number
of strings (e.g. for bigger window sizesW > 100).
In Figure 6c, we measure versatility
enhancements of up to 60%. By the by, it can be
additionally observed that it isn't generally ideal
to utilize a high number of strings – regardless of
whether the issue is very parallelizable.

Adjusting the quantity of bunches K:

In Figure 7, we plot the outright
throughput for a shifting number of bunches and
different strings. We xed the window measure
toW = 100. Of course, an expanding number of
bunches prompts lessened throughput due to the
expanded computational intricacy of the
bunching issue. Clearly, expanding the quantity
of strings builds the throughput up to a specific
point. This is predictable with the ndings above.

6 CONCLUSION
Stream Learner is a conveyed CEP framework
and API customized to adaptable occasion
identification utilizing Machine Learning on
gushing information. In spite of the fact that our
API is universally useful, StreamLearner is
particularly appropriate to information parallel
issues – with numerous occasion sources causing
different examples in the occasion streams. For
these situations, StreamLearner can improve
standard CEP frameworks with capable Machine
Learning usefulness while scaling incredibly
well due to the pipelined incremental preparing
and deduction ventures on autonomous models.

7 REFERENCES
[1] Meena Mahajan, Prajakta Nimbhorkar, and
Kasturi Varadarajan. 2009. The planar k-means

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

24

problem is NP-hard. In International Workshop
on Algorithms and Computation. Springer, 274–
285.
[2] Grzegorz Malewicz, Matthew H Austern,
Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. 2010. Pregel:
a system for largescale graph processing. In
Proceedings of the 2010 ACM SIGMOD
International Conference on Management of
data. ACM, 135–146.
[3] Christian Mayer, Muhammad Adnan Tariq,
Chen Li, and Kurt Rothermel. 2016. GrapH:
Heterogeneity-Aware Graph Computation with
Adaptive Partitioning. In Proc. of IEEE ICDCS.
[4] Ruben Mayer, Boris Koldehofe, and Kurt
Rothermel. 2015. Predictable Low- Latency
Event Detection with Parallel Complex Event
Processing. Internet of Things Journal, IEEE 2, 4
(Aug 2015), 274–286.
[5] Ruben Mayer, Christian Mayer, Muhammad
Adnan Tariq, and Kurt Rothermel. 2016.
GraphCEP: Real-time Data Analytics Using
Parallel Complex Event and Graph Processing.
In Proceedings of the 10th ACM International
Conference on Distributed and Event-based
Systems (DEBS ’16). ACM, New York, NY,
USA, 309–316.
DOI:https://doi.org/10.1145/2933267.2933509

[6] Ruben Mayer, Muhammad Adnan Tariq, and
Kurt Rothermel. 2017. Minimizing
Communication Overhead in Window-Based
Parallel Complex Event Processing. In
Proceedings of the 11th ACM International
Conference on Distributed and Eventbased
Systems (DEBS ’17). ACM, New York, NY,
USA, 12. DOI:https://doi.org/10.
1145/3093742.3093914.
[7] Shen Furao, Tomotaka Ogura, and Osamu
Hasegawa. 2007. An enhanced selforganizing
incremental neural network for online
unsupervised learning. Neural Networks 20, 8
(2007), 893–903.
[8] Vincenzo Gulisano, Zbigniew Jerzak, Roman
Katerinenko, Martin Strohbach, and Holger
Ziekow. 2017. The DEBS 2017 grand challenge.
In Proceedings of the 11th ACM International
Conference on Distributed and Event-based
Systems, DEBS ’17, Barcelona, Spain, June 19 -
23, 2017.
[9] Jay Kreps, Neha Narkhede, Jun Rao, and
others. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the
NetDB. 1–7.
[10] Narayanan C Krishnan and Diane J Cook.
2014. Activity recognition on streaming sensor
data. Pervasive and mobile computing 10 (2014),
138–154.

