

REDDISH-ORANGE EMISSION FROM SAMARIUM DOPED PbO-AS₂O₃ GLASSES

A. Chitti Babu¹, T. Sambasiva Rao², D.V. Krishna Reddy³, M. Rami Reddy⁴ Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar

Abstract

The Sm₂O₃ doped lead arsenate glasses (40-x) PbO-60 As₂O₃- xSm_2O_3 (x = 0.2, 0.4, 0.6, 0.8 and 1.0 %) has been prepared by conventional melt quenching technique and is characterized through FT-IR and absorption and emission analysis. The FT-IR spectra analysis the structure and vibrational modes for these glasses. The optical absorption spectra several absorption transitions, exhibited Judd-Ofelt (JO) intensity parameters were obtained from the absorption spectrum. The emission spectra exhibited four transitions ⁴G_{5/2} $\rightarrow {}^{6}\text{H}_{\text{J}}$ (J = 5/2,7/2,9/2 and 11/2) ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{7/2}$ is responsible for reddish-orange emission and the calculated color coordinates for the present glasses fall well within the reddish-orange region of the CIE diagram.

Index Terms: PbO-As₂O₃ glasses; FT-IR; optical absorption; emission.

1.INTRODUCTION

Now a day's rare earth (RE) doped glasses play important role for the development of lasers. telecommunications, lighting. displays, photovoltaic devices and drug carriers. [1 - 4]. In generally, the optical and spectroscopic studies of RE ions are strongly dependent on host materials. One of the chosen host materials is oxide glasses which is chemically durability, thermally; optically transparent at the excitation and lasing wave lengths [5].Sm³⁺ doped laser materials are of interest in lasers for future generation nuclear fusion [6] Comparing to other rare-earth ions Sm³⁺ doped laser materials have many advantages and exhibit small emission efficiencies [7-8]. The optical properties of RE ions with chemical Environment and this has been tested for Sm³⁺ in

different hosts[9-10].Samarium has promised characteristics for spectral hole burning studies[11-12].

In the present investigations Sm³⁺ ions doped with PbO-As₂O₃ glasses.As₂O₃ is very strong network former, it's exhibiting high Raman scattering low-loss coefficient and materials for long-distance optical transmission [13-15]. Several studies on As₂O₃ glasses mixed with alkali halides, rare earth oxides and some heavy metal oxides [16-20].Certain studies on As₂O₃ glasses mixed with different Semiconducting oxides viz; GeO₂, V2O5, SiO2 etc are also available [21-23].An addition of PbO,As₂O₃ glasses are observed moisture resistant and low rates of crystallization. PbO is generally modifier but acts as dual role like modifier and glass former with PbO₄ structural units. If Pb-O is Ionic-glass modifier and Pb-O is Covalent-glass former. Certain studies on structural investigations reported earlier [24-29].

2. Experimental Methods

2.1 Glass Preparation

A series of PbO-As₂O₃ glasses doped with samarium ions (Sm^{3+}) were prepared by conventional melt quenching technique in the compositions of (40-x)PbO-60 As₂O₃- xSm₂O₃ (where x = 0.2, 0.4,0.6, 0.8 and 1.0%). The raw materials of lead oxide (PbO), Arsenic trioxide (As₂O₃) and Samarium oxide (Sm₂O₃) of appropriate amounts are mixed together and melted in silica crucible at a temperature of 600-650°c for 10 to 15 min until a bubble free liquid has been formed. The resultant melt was then poured in a brass mould and subsequently annealed from 200°c with a cooling rate 1 °c/min .Then the samples are finely polished to final dimensions 1 cm x 1 cm x 0.2 cm for the

2.2 Characterization

The refractive index of the glasses is measured by using abbe's refractometer and the density of the glasses calculated by means of Archimedes's principle. The Fourier transform carried infrared analysis is out using SHIMADZU-IRAffinity-1S FT-IR spectrophotometer with the resolution of 0.1cm⁻¹ in the spectral range 400-4000 cm⁻¹ using KBr pellets (300 mg) containing a pulverized sample (1.5 mg). The optical absorption (UV-VIS) spectra are recorded on JASCO, V-570 spectrophotometer from 200 to 2400 nm with spectral resolution of 0.1 nm. The excitation and emission were carried out by using FLS-980 Fluorescence spectrometer at room temperature by using xenon flash lamp as an excitation source having excited and emission wavelengths as 403.2 nm and 600 nm respectively.

3. Results

3.1 Physical parameters

From the measured values of density d and calculated average molecular weight \overline{M} , various physical parameters such as Samarium ion concentration N_i and Samarium ion separation r_i and other physical parameters also caliculated are presented in table 1.

Fig. 1.Photograph of PbO-As₂O₃ glasses doped with different concentrations of Sm₂O₃

Density (d) and Molar Volume (V_m)

It has been observed that the concentration of Samarium increases the value of density decreased from 5.999 to 5.902. The molar volume increase from 34.71 to 35.45. The density decreases and the molar volume increase the compaction of structure of glass of increasing Samarium contents.

Polaron radius (r_p) and Field strength(F)

The variation of estimated values of r_p and field strength for different concentrations is shown in

Table 1.From the Table 1 ,it is clear that the estimated values of r_p decreases with increase of Sm_2O_3 content in the glass composition. This may be atributed to the enhanced compactness observed with Sm_2O_3 addition and due to the the decreases of the average rare-earth Oxygen distance. As a result of that, the Sm-O bond strength increases, producing stronger field strength around Sm^{3+} ions .

Molar electronic polarizability and metallization parameter

The relationship between the molar electronic polarizability (α_m) of the material and its molar refraction (R_m) is given by

$$\alpha_{\rm m} = (3/4\pi N_{\rm A}) \ge R_{\rm m}$$

Where N_A is the Avogadro number. The α_m values listed in Table 1, indicate the decrease of Rm values as well as the decrease in polarizabilities. For metals R_m/V_m > 1, and non metals R_m/V_m < 1 [33]. M = 1 - Rm/Vm

The magnitude of metallization values are decreased from 0.582 to 0.598 listed Table 1.Earlier reported the SiO₂ and B₂O₃ glasses containing fluorides, alkali metals alkali earth oxides small metallization factors ranging from to 0.5 to 0.7 [34], but my observations the values are also ranging 0.58 to 0.6.

3.2 FTIR spectral analysis

Fig.2.Shows the FT-IR transmittance spectrum of PbO-As₂O₃ doped with Sm₂O₃ glasses. The spectrum consists 5 bands are observed As₂O₃ exhibit four fundamental absorption bands: v₁ -symmetric stretching vibrations (1050 cm⁻¹),v₂ – symmetric bending vibrations (618 cm⁻¹),v₃ –doubly degenerated stretching vibrations (795 cm⁻¹),v₄ –doubly degenerated bending vibrations (505 cm⁻¹) [35], and other band (weak) is observed in the range 460-475 cm⁻¹ due to PbO₄ units[36,37] in the spectra of all the glasses is observed. In the present paper the molar composition of Sm₂O₃ increases in steps from 0.2 to 1.0 mol%, all the bands are gradually increases.

Fig.2. FT-IR spectra of PbO-As₂O₃:Sm₂O₃ glasses

3.3 Optical absorption spectra

The optical absorption spectra of PbO-As₂O₃:Sm₂O₃ glasses (Fig.3 (a) and (b)) measured at room temperature in the spectral wavelength range 300-1600 nm with spectral resolution of 0.1 nm, have exhibited 8 absorption bands corresponding to following transitions [38]: ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{13/2} + {}^{4}\text{I}_{11/2} + {}^{4}\text{M}_{17/2}$ (UV-visible region), ${}^{6}\text{F}_{11/2}$, ${}^{6}\text{F}_{9/2}$, ${}^{6}\text{F}_{7/2}$, ${}^{6}\text{F}_{5/2}$, ${}^{6}\text{F}_{1/2}$, ${}^{6}\text{H}_{15/2}$ (NIR region)

The pattern of the absorption spectra for all the glasses same. Samarium concentration is increases the intensity also increases but 0.6 Sm glass absorption band ($^{6}F_{11/2}$) is slightly decreases compare to 0.4 Sm.Genearally Sm³⁺ ions are exhibit several bands in the UV-region but we can found only one transition depending up on host materials.

From absorption edges, we have estimate the optical band gaps

(E_o) of these glasses by drawing Tauc plot (Fig-3(c)) between $(\alpha\hbar\omega)^{1/2}$ and $\hbar\omega$ as per the equation:

 $\alpha(\omega) \hbar\omega = C (\hbar\omega - E_0)^2$

The optical band gap has been found to decline moderately with enlarge in the concentration Samarium in the glass matrix. The data related to optical absorption spectra of these glasses energy band gap(E_0) are presented in Table 1.

The importance of rare earth spectra earlier reported by Wybourne's book [39] .Conventional Judd-Ofelt (J-O theory) parameter has been calculated from the absorption spectra of Sm^{3+} ions. The intensity of the absorption bands can be estimated by using oscillator strength f_{exp} , which is calculated from the absorption spectra by using following equation

Where ε (v) denotes the molar extinction coefficient at average energy v in cm⁻¹. According to the *f*-*f* intensity model of the J-O theory [40],the calculated oscillator strength from initial state to an excited state for electric dipole transitions is determined by the J-O theory.

$$f (\psi J; \psi' J') = \frac{8\pi 2mcv}{3h(2J+1)} \left[\frac{(n2+2)2}{9n} \right] X$$
$$\sum_{\lambda=2,4,6} \Omega_{\lambda} (\psi J \| U^{\lambda} \| \psi' J')^{2} - \dots (2)$$

where m refer to the mass of the electron, c is the velocity of light in vacuum, h is the plank's constant, n is the refractive index of refraction of the glass, v is the frequency of the transition. (n^2+2) /9n is the refractive index. $\psi J \rightarrow \psi' J'$, Ω_{λ} ($\lambda = 2, 4$ and 6) are the J-O intensity parameters and $||U^{\lambda}||$ are the doubly reduced matrix elements of the unit tensor operators are available in the literature [41] .Unit tensor operators of the rank $\lambda=2$, 4 and 6 which are evaluated from the intermediate coupling approximation for a transition $\psi J \rightarrow \psi' J'$. The experimental oscillator strengths of absorption bands of Sm³⁺ doped glass are determined from the known values of Sm³⁺ concentration, sample thickness, peak position and peak areas by using the equation 1. By applying least square fitting procedure to determine the J-O intensity parameters Ω_2 , Ω_4 and Ω_6 using experimentally measured oscillator strength, rms deviation values are presented in Table 2 &3.

Fig.3 (a).Optical absorption spectra of PbO-As₂O₃:Sm₂O₃ glasses (UV-visible region)

3.4 Excitation, emission Spectra and radiative properties

The Excitation wave length role plays important to the excitation spectra. The excitation spectrum of Sm0.2 glass by recording the emission of 600nm is shown in Fig 4 (a).It contains 12 excitation bands observed at

345,361,376,386,403,417,437,443,475,498 and 527nm →

correspondingtothe⁶H5/2to⁴K17/2, ⁴D3/2, ⁶P7/2, ⁴L15/2, ⁶ F7/2,⁶P5/2,⁴G9/2,⁴M17/2,⁴I11/2,⁴G7/2 and $^{4}F_{3/2}$ transitions respectively. The excitation band due to ${}^{4}I_{11/2}(475)$ transition is found to more the ⁶H_{5/2} intense. The emission spectra of Sm³⁺ doped PbO -As₂O₃ glasses recorded in the spectral region of 500-750 nm under 403.2 nm excitations presented in Fig 4 (b). The emission spectra exhibit 4 transitions ${}^{4}G_{5/2}$ to ${}^{6}H_{J}$ (J=5/2,7/2,9/2 and 11/2). We can observed Sm₂O₃ concentration increases simultaneously the intensity also increased, transition from ${}^{4}G_{5/2}$ to ${}^{6}H_{7/2}$ (600nm) is the highest intensity and exhibits reddish orange .The ⁶H_{11/2} transition is very weak. The other two transitions (6H5/2, 6H9/2) show moderate intensities, these emissions are useful in medical diagnostics, color displays and high density optical storage. The partial energy level diagram shown in Fig4 (c).

.Non- radiative decay from $({}^{4}I_{13/2} + {}^{4}I_{11/2} + {}^{4}M_{17/2})$ excited state to ${}^{4}G_{5/2}$ Meta stable state. The larger energy gap between ${}^{4}G_{5/2}$ level to next level ${}^{6}F_{11/2}$ is 7117 cm⁻¹.The partial energy level diagram shown in Fig.4 (c). The spontaneous emission transition probability for transition from an initial state (ψ J) to a final state (ψ 'J') is given by [42]

$$A_{\rm R}(\psi_{j};\psi_{j}') = \frac{64\pi^{4}r^{8}}{2h(2j+1)} \left(\frac{n(n^{2}+2)^{2}}{9}S_{\rm ed} + n^{8}S_{\rm md}\right)$$
(3)

Where S_{ed} and S_{md} are electric and magnetic dipole line strengths .Electric dipole transitions are dominated comparing to magnetic dipole transitions, only we can calculate electric dipole transitions.

S_{ed} can be expressed as

$$S_{\text{ed}} = \sum_{\lambda=2,4,6} \Omega_{\lambda} \left(\Psi J \| U^{\lambda} \| \Psi' J' \right)^{2}$$

Total radiative probability A_T can be expressed as Summation of all possible radiative transition probabilities (A_R)

(4)

Stimulated emission cross-section (σ_{f}^{f}) can be expressed as

$$\sigma_{\mathbf{p}}^{\mathbf{E}} = \frac{\lambda_{\mathbf{p}}^{\mathbf{g}} \mathbf{A}_{\mathbf{R}}}{\varepsilon_{\pi \circ n} \varepsilon_{\Delta \lambda_{eff}}} \qquad (5)$$

Where λ_P is band intensity of corresponding peak position, A_R s the radiation transition probability, $\Delta \lambda_{eff}$ is the effective line width, n is the refractive index, c velocity of light.

Branching ratio(β_R) can be expressed as

$$\boldsymbol{\beta}_{\mathbf{R}} = \frac{\boldsymbol{\alpha}_{\mathbf{N}}}{\boldsymbol{A}_{\mathbf{P}}} \qquad ----- \qquad (6)$$

Radiative lifetime(τ_R) can be expressed as

 $\tau_{\mathbf{R}} = [\mathbf{A}_{\mathbf{T}}]^{-1}$ (7) Various radiative parameters are calculated in the present table 4.

Fig.4 (a). Excitation spectra of PbO-As₂O₃:Sm₂O₃ glass (0.2 mol %)

3.5 CIE color coordinates

The tunability of color emitted by the glass samples, the variation in the relative intensities of the emission bands has been analyzed in the CIE diagram [43]. The diagram exhibits all the chromaticity visible to the human eye.Fig.5 shows the CIE (1931) chromaticity co-ordinates of Sm³⁺ doped PbO-As₂O₃ glasses under 403.2 nm excitations. The evaluated chromaticity coordinates (x,y) are (0.577,0.417), (0.580,0.409), (0.587,0.405), (0.593,0.396), (0.599,0.388) for Sm^{3+} doped PbO-As2O3 glasses (Sm0.2,Sm0.4,Sm0.6,Sm0.8,Sm1.0) respectively. These coordinates are very useful in determining the exact color of the samples. Fig.5 represents CIE diagram of Sm³⁺ doped PbO-As₂O₃ glasses.

Fig.4 (b). Emission spectra of PbO-As₂O₃: Sm₂O₃ glasses

Fig.4 (c). Energy spectrum of PbO-As₂O₃: Sm₂O₃ glasses

Fig.5. The CIE chromaticity diagram of PbO-As₂O₃:Sm₂O₃ glasses

4. Discussion

The composition of PbO-As₂O₃; Sm₂O₃ glass admixture system is an of glass former, modifiers. As₂O₃ is one of the strong network former with corner sharing AsO3 pyramidal units; normal bond lengths of As-O lie between 1.72 and 1.81 A° and O-As-O and As-O-As band angles die in the range 90-103°, and 123-135° respectively[44].PbO is in generally modifier and enters the glass network by breaking up the As-O-As bands (normally the oxygen's of PbO break the local symmetry while Pb⁺² ions occupy interstitial positions)and introduces coordinate defects known as dangling bands alloy with non-bridging oxygens; In this case Pb⁺² octahedral coordinated.However,PbO may also participate in the glass network with PbO4 structural units when lead ion is linked to four oxygens in a covalency bond configuration.

In the FT-IR spectra of these glasses the presence of meta center of v3 vibrational band of ASO3 units in the range of (800-809) also support this view. From X-ray diffraction studies(not shown), oxidation of As^{3+} to As^{5+} ions also appears possible. These As⁵⁺ ions occupy both tetrahedral and octahedral positions in the glass network; the normal bond length of As^{5+} - O is ~ 1.69 A° [45, 46]. The increase in intensity with the gradual shifting of the symmetric bending vibrational band (v_2) from 619-626 cm⁻¹ with the introduction of Sm_2O_3 (up to 1 %) into the orderliness in the glass network. The vibrational bands located in the regions 1045-1059 cm⁻¹ and 502-514. The presence of PbO₄ units in the present glass network can be established from the observation of vibrational bands between 460-465 cm⁻¹. In the optical absorption spectra, the absorption bands of Sm³⁺ ion can be classified into two groups: the first is the low-energy group which contains the transitions up to 10700 cm⁻¹ (~ 935 nm) and the other is high-energy group containing the transitions in the range 17600-32000 cm⁻¹ (\sim 570-371 nm). We can observed in the visible region it is to be noted that several peaks at lower wave length disappear on addition of PbO [47, 48]. Table -3 represents the comparison of Ω_{λ} values of Sm³⁺ ions in prepared glasses. Generally intensity parameter Ω_2 indicates the asymmetry and covalence of the Ln^{3+} sites. On the other hand, Ω_4 and Ω_6 values are related to the bulk property and rigidity of the samples. The Ω_{λ} values of prepared samples trend which is similar to TWSm10 [49], NBNFS [50], LKBPBG [51], PbFPSm10 [52] and KNSZLSm10 [53] glasses. Compared to other glasses (1-5) the Ω_4 value is low, earlier reported [54] Ω_2 , Ω_4 and Ω_6 values are low compared to prepared glasses. Due to this reason the higher magnitude of Ω_4 suggests higher rigidity of the medium with higher covalence around the Sm³⁺ ion site. The photoluminescence spectrum consists of potential green, yellow and orange-reddish emission at 565, 600, 645 and 705 nm. The ⁶H_{9/2} emission with the most intense line at 645 nm as well as the ${}^{6}\text{H}_{7/2}$ band at 600 nm is dominant in the spectrum. In the table-4, we can observed Sm₂O₃ concentration increases simultaneously β_R also increased, earlier reported (55) β_R values are above 0.5 due to this reason in the present investigations more intense reddish-orange emission is exhibited. The calculated color coordinates for the present glasses fall well within the reddish-orange region of the CIE diagram.

5. Conclusions

Sm³⁺ doped lead arsenate glasses have been prepared and characterized using FT-IR, absorption and emission spectra. The FT-IR spectrum revealed the structure and vibrational modes for lead arsenate glasses. The optical absorption spectra of these glasses exhibited several absorption transitions of Sm³⁺ ions in the visible and IR regions originating from ⁶H_{5/2} ground state. Successfully explained J-O theory. Intense reddish-orange emission has been observed from PbO-As₂O₃:Sm₂O₃glasses.From the results of these investigations, it is concluded that the titled glasses are promising materials for the development of visible lasers, fluorescent display devices and optical amplifiers.

Fable 1	l: var	ious pl	hysical	l parameters of	
PbO-A	s2O3 g	glasses	doped	d with Sm ₂ O ₃	

00-113203	grasses ut	spea m	un Sm2	03	
Glass	0.2	0.4	0.6	0.8	1.0
Density d (g/cm ³)	5.99	5.976	5.956	5.931	5.902
Avg.Mol. Weight	208.2	208.4	208.7	208.9	209.2
(M)					
Conc.of Sm ³⁺ ions N _i $(10^{21}/cm^3)$	3.47	6.9 0	10.31	13.67	16.98
Inter ionic distance $r_i(A^o)$	6.605	5.251	4.59	4.18	3.88
Polaron radius $r_p(A^o)$	2.66	2.11	1.85	1.68	1.56
Field strength $F_{,}(x10^{15}$ $cm^{-2})$	4.23	6.73	8.76	10.62	12.32
Refractive index(n)	1.777	1.765	1.758	1.741	1.731
Reflection loss	0.418	0.413	0.410	0.403	0.399
Molar volume (V _m)	34.71	34.88	35.0	35.23	35.4
Molar refraction(R _m)	14.50	14.40	14.36	14.20	14.14
Molar electronic polarizabil $ity(\alpha_m)(A^\circ)^3$	5.754	5.713	5.698	5.633	5.609
Metallizati on factor(M)	0.581	0.587	0.599	0.596	0.601
Optical band gap(eV)	2.95	2.93	2.85	2.82	2.99

Transition		Sm0.2	Sm0.4		Sm0.6		Sm0.8		Sm1.0	
from ⁶ H _{5/2}										
	fexp	fcal	fexp	fcal	fexp	fcal	fexp	fcal	fexp	fcal
	(x	(x	(x	(x	(x	(x	(x	(x	(x	(x
	10-6)	10-6)	10-6)	10-6)	10-6)	10-6)	10-6)	10-6)	10-6)	10-6)
$^{4}I_{13/2} +$										
$^{4}I_{11/2} +$.8327	.0027	.8921	.0005	0.392	.0007	1.365	.0037	3.6662	.0066
$^{4}M_{17/2}$										
${}^{6}F_{11/2}$.0014	0029	.0120	.0300	.0186	.0294	.5143	.1646	.6385	.2356
⁶ F9/2	0190	0105	1220	1701	1212	1755	0126	0776	1 2416	1.417
	.0160	.0103	.1529	.1/04	.1312	.1/33	.9150	.9770	1.5410	9
⁶ F _{7/2}	1645	1702	2467	2286	2516	2251	1 1 4 0	1 220	1 0000	1.922
	.1043	.1/05	.2407	.2280	.2310	.2331	1.149	1.229	1.0000	5
⁶ F _{5/2}	.3399	.3689	.0702	.0699	.0679	.0932	.4790	.4081	.9401	.8449
⁶ F _{3/2}	.2250	.2013	.0004	.0306	.0045	.0509	.3031	.4735	.3535	.6155
${}^{6}F_{1/2}$.0507	0002	.0403	.0016	.0424	.0015	1.123	.0086	.8488	.0123
⁶ H _{15/2}	0165	0280	0160	003	0202	0100	4627	2004	1296	2082
	.0103	.0380	.0100	0	.0302	.0100	.403/	.3904	.4380	.3083
r.m.s.	0.204		0.316		0.4157		0.630		1 3/0	
deviation	0.294		0.310		0.4137		0.039		1.340	

Table 2: Oscillator strengths of various transitions of Sm³⁺ ion in PbO–As₂O₃ glasses.

Table 3: J–O parameters, Sm³⁺ ion doped PbO–As₂O₃ glasses

Glass	Ω_2 (x	Ω4(x	Ω ₆ (x	Trend
	10^{-20}cm^2)	10^{-20}cm^2)	10^{-20}cm^2)	
Sm0.2	.10191	.5975	247	$\Omega_4 > \Omega_2 > \Omega_6$
Sm0.4	0.1172	.1876	0.811	$\Omega_4 > \Omega_2 > \Omega_6$
Sm0.6	.14764	.176	.0264	$\Omega_4 > \Omega_2 > \Omega_6$
Sm0.8	1.0378	1.176	0.558	$\Omega_4 > \Omega_2 > \Omega_6$
Sm1.0	1.2903	1.436	0.816	$\Omega_4 > \Omega_2 > \Omega_6$
TWSm10(1)	2.01	4.38	1.56	$\Omega_4 > \Omega_2 > \Omega_6$
NBNFS(2)	2.15	3.95	1.89	$\Omega_4 > \Omega_2 > \Omega_6$
LKBPBG(3)	3.00	5.19	1.69	$\Omega_4 > \Omega_2 > \Omega_6$
PbFPSm10(4)	5.20	5.81	3.76	$\Omega_4 > \Omega_2 > \Omega_6$
KNSZLSm10(5)	8.30	8.80	3.43	$\Omega_4 > \Omega_2 > \Omega_6$
Tellurite(6)	0.006	0.339	0.243	$\Omega_4 > \Omega_6 > \Omega_2$

Glass	Wavelength	Transition	S _{ed} (x	Α	AT	β _R	^{σE} p(X	$\tau_{\rm R}$ (sec)
	(nm)	from ⁴ G _{5/2}	10 ^{^-23})			-	10^-25)	
	565	⁶ H _{5/2}	4.474	12.63	78.81	0.16	44.77	0.0126
Sm0.2	600	⁶ H _{7/2}	14.57	35.14	78.81	0.44	2.80	0.0126
	643	⁶ H _{9/2}	4.57	10.45	78.81	0.13	19.82	0.0126
	705	⁶ H _{11/2}	2.64	4.58	78.81	0.05	5.33	0.0126
Sm0.4								
	565	⁶ H _{5/2}	2.86	9.35	42.9	0.21	20.462	0.023
	600	⁶ H _{7/2}	8.86	19.76	42.9	0.46	3.911	0.023
	642	⁶ H _{9/2}	2.32	6.34	42.9	0.14	121.5	0.023
	708	⁶ H _{11/2}	0.86	1.43	42.9	0.03	29.95	0.023
Sm0.6								
	565	⁶ H _{5/2}	2.47	7.26	25.74	0.28	8.92	0.0388
	600	⁶ H _{7/2}	3.60	12.6	25.74	0.49	0.79	0.0388
	645	⁶ H _{9/2}	1.49	3.51	25.74	0.13	6.37	0.0388
	705	⁶ H _{11/2}	0.98	1.77	25.74	0.06	1.99	0.0388
Sm0.8								
	565	⁶ H _{5/2}	12.13	32.50	126.3	0.25	183.09	0.0079
	600	⁶ H _{7/2}	13.61	63.15	126.3	0.499	33.64	0.0079
	645	⁶ H _{9/2}	15.70	34.18	126.3	0.27	21.35	0.0079
	705	⁶ H _{11/2}	4.37	7.23	126.3	0.05	43.85	0.0079
Sm1.0								
	565	⁶ H _{5/2}	20.84	59.66	234.1	0.25	18.43	0.0042
	600	${}^{6}\text{H}_{7/2}$	31.48	128.3	234.1	0.54	20.92	0.0042
	644	⁶ H _{9/2}	18.44	42.49	234.1	0.18	46.65	0.0042
	706	⁶ H _{11/2}	8.39	14.81	234.1	0.16	37.19	0.0042

Table4: Various radiative properties of Sm³⁺ doped PbO-As₂O₃ glasses

References

[1] J. Chen, Y. Liu, L. Mei, H. Liu, M. Fang, Z. Huang, Sci. Rep. 5 (2015) 1-9.

[2] Ch.B. Annapurna, Sk. Mahamuda, M. Venkateswarlu, K. Swapna, A.S. Rao, G. Vijaya Prakash, Opt. Mater 62 (2016) 569 - 577.

[3] N. Deopa, A.S. Rao, Sk. Mahamuda, M. Gupta, M. Jayasimhadri, D. Haranath, G. Vijaya Prakash, J. AlloysCompd 708 (2017) 911-921.

[4] A.K. Vishwakarma, M. Jayasimhadri, J. Lumin 176 (2016) 112-117.

[5] M.J.Weber, J.Non-cryst.Solidds 123 (1990) 208-222.

[6] Z. Lin, X. Liang, Y. Ou, C. Fan, S. Yuan, H. Zeng, G. Chen, J. Alloys Compd. 496 (2010) L33.

[7] M.A.K.Elfayoumi, M.Farouk, M.G.Brik, M.M.Elokr, J.Alloys compd.492 (2010)712.

[8] G.Blasse, Advances in Inorganic chemistry, Vol.35, AcademicPress, California, 1990, P.319.

[9] R.R.Reddy, Y.N.Ahammed, P.A.Azeem, K.R.Gopal, T.R.Rao, N.S.Hussai,

J.QuantumSpectrosc.Radiat.Transf.71,149 (2003). [10]N.S.Hussain,S.Buddhudu,Mater.Res.Bull. 33, 8149 (1998).

[11] C.K.Jayasankar, E.Rukmini, Opt.Mater 8 (1997) 193-205.

[12]N.S.Hussain,Y.P.Reddy,K.R.Reddy,S.Bud dhudu,Phys.Chem Glass 42, 358 (2001).

[13] C.K.Jayasankar, P.Babu, J.Alloys compd.307, 82 (2000).

[14] K.Hairao, S.Todoroki, D.H.Cho.N.Soga, Opt.Lett.18 (1993) 1586.

[15] A.Kurita, T.Kushida, T.Izumitani, M.Matsukawa, Opt.Lett. 19 (1994) 314..

[16] S.C.Baidoc, I.Ardelean, P.Pascuta, Physica B 406 (2011) 4253.

[17] S.Bala, Murali Krishna, D.Krishna Rao, J.Alloys Compd. 509 (2011) 7373.

[18]Y.Gandhi,N.KrishnaMohan, N.Veeraiah, J.Non-Cryst.Solids 357 (2011) 1193.

[19] D.L.Wood, K.Nassau, and D.L.Chadwick, Appl.Opt 21, 4276 (1982).

[20] F.Smektala, I.Melscoet, G.Fonteneau, and J.Lucas, J.Non-Cryst.Solids 239, 156 (1998).

[21] K.Nassau and D.L.Chadwick, Mater.Res.Bull. 17,715 (1982).

[22] R.Kenworthy, Silicates Ind. 37, 245 (1972).

[23] H.M.Heaton and H.Moore, J.Soc.Glass Technol. 41, 3 (1957).

[24] W.H.Grodkiewicz, H.M.O.Brain, L.Pressman, S.Singh, L.G.Vanuitert,G.Zydzik, J.Non-Cryst Solids 44 (1981) 405.

[25] E.Culea, Phys.Status Solidi (a) 126 (1991) K159.

[26] M.Imaoka,in: Glass-Formation Range and Glass Structure, Adv.inGlassTechno ,Vol.1,Plenum, Newyork, 1962, P.149.

[27] M.Imaoka and H.Hasegawa, Phys.Chem.Glasses 21, 67 (1980).

[28] D.Beeman, R.Lynds, and M.R.Anderson, J.Cryst-Solids 42, 61 (1980).

[29] A.Datta, A.K.Giri, D.Ckaravorty, Appl.Phyys.Lett.59, 414(1991).

[30] R.Oyamada, A.Kishioka, and K.Sumi, J.Non-Crsyst.Solids 112,282(1989).

[31] N.Satyanarayana, A.Karthikeyan, and M.Venkateswarlu, J.Mater.Sci.31, 5471 (1996).

[32] Al.Nicula, E.Culea, and I.Lupsa, J.Non-Cryst.Solids 79,325 (1986).

[33] K.F.Herzfeld, Phys.Rev.29 (1927) 701-705.

[34]F.EL-Diasty,F.A. Abdel wahab, M.Abdel-Baki, J.Apply.Phys. 100 (2006) 093511-93517 .

[35] G.Lucovsky and F.L.Galeener, J.Non-Cryst. Solids 37, 53 (1980).

[36] G.Srinivasarao and N.Veeraiah, J.Phys.chem.solids 63, 707 (2002).

[37] P. Subbalakshmi and N.Veeraiah, Phys.Chem.Glasses 42, 307 (2001).

[38]K.Bhargavi, M.SrinivasaReddy, P.RaghavaRao, N.Narasimha Rao, M.SundaraRao, V.RaviKumar, N.Veeraiah, Mareials Research Bulletin 47 (2012) 267-273.

[39] Wybourne BG. Spectroscopic properties of rare earths. NewYork: Wiley-Interscience, 1965.

[40] B.R. Judd, G.S. Ofelt Phys. Rev. 127 (1962) 750;

[41]. Carnall WT, Goodman GL, Rajnak K, Rana RS, J Chem. Phys 1989; 90:3443-57.

[42]Y.N.Ch.RaviBabu, P.SreeRamNaik, K.Vijaya Kumar, N.Rajesh Kumar, A.Sureshkumar, JQuant Spectrosc Radiat Transfer 113 (2012) 1669 – 1675.

.[43] E.Fred Schubert, in: light emitting diodes, 2nd edition, CambridgeUniversity Press,(Chapter 17) 2006 P. 292

[44] G.Srinivasarao, N.Veeraiah. Journal of alloys and compounds 327 (2001) 52-65.

[45] F.A.Cotton, G.Wilkinson, C.A.Murilo and M.Bochmann, Advance dinorganicchemistry, Wiley, Newyork, 1999.

[46] J.M. Charnock. D.A.Polya, A.G. Gault and R.A. Wogelius, Am. Mineralog 921 (2007) p.856.

[47] L.Bohem.R.Reisfeld, N.Spector, J.Solid state chem., 28 (1979) 75-78.

[48] P.Srivastava, S.B.Rai, D.K.Rai, Specrochim.Acta part A 60 (2004) 637-642.

[49]G.Venkataiah, C.K.Jayasankar, K.Venkata Krishna, P.Dharmaiah, N.Vijaya,Optical Materials 40 (2015) 26-35

[50] S.S. Sundari, K. Marimuthu, M. Sivraman and S. S. Babu, J. Lumin. 130 (2010) 1313-1319.

.[51] J. Zhang, D.L. Yang, E.Y.B Pun, H. Gong and H. Lin, J. Appl. Phys. 107 (2010) 123111-123116.

[52] C.R.Kesavulu, C.K.Jayasankar, J.Lumin. 132 (2012) 2802-2809.

[53].Ramachari, L.Rama Moorthy, C.K.Jayasankar, Mater Res Bull 48 (2013) 3607-3613

[54]Akshaya Kumar, D.K.Rai, S.B.Rai, Spectrochimica Acta Part A 59 (2003) 917.

[55] SK.Nayab Rasool, L.Rama Moorthy, C.K.Jayasankar, Optics Communications 311 (2013) 156 – 162.