

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

DOI: 10.21276/ijcesr.2018.5.1.5
24

IMPLEMENTATION OF SHA- HARDWARE ACCELERATORS

Sanjeeva M, SURESH REDDY PURINI,SRIKANTH MYDAPALLY, D.SHEKAR GOUD,
A.PRADEEP KUMAR

Assistant Professor,Deptof ECE,
Ellenki college of Engineering & Technology,

sanjeevmadduluri@gmail.com

Abstract—This paper presents a new set of
techniques for hardwareimplementations of
Secure Hash Algorithm (SHA) hash
functions.These techniques consist mostly in
operation reschedulingand hardware
reutilization, therefore, significantly
decreasing thecritical path and required
area. Throughputs from 1.3 Gbit/s to1.8
Gbit/s were obtained for the SHA
implementations on a XilinxVIRTEX II Pro.
Compared to commercial cores and
previouslypublished research, these figures
correspond to an improvement
inthroughput/slice in the range of 29% to
59% for SHA-1 and 54%to 100% for SHA-2.
Experimental results on hybrid
hardware/softwareimplementations of the
SHA cores, have shown speedups upto 150
times for the proposed cores, compared to
pure software implementations.

Index Terms—Crytography, field-
programmable gate array(FPGA), hardware
implementation, hash functions, Secure
HashAlgorithm (SHA).

I. INTRODUCTION
Cryptographic algorithms can be divided into
threeseveral classes: public key algorithms,
symmetric key algorithms,and hash functions.
While the first two are used toencrypt and
decrypt data, the hash functions are one-way
functionsthat do not allow the processed data to
be retrieved. Thispaper focuses on hashing
algorithms.Currently, the most commonlyused
hash functions are the MD5 and the Secure
HashAlgorithm (SHA), with 128- to 512-bit
output Digest Messages(DMs), respectively.
While for MD5, collision attacks are

computationallyfeasible on a standard desktop
computer [1], currentSHA-1 attacks still require
massive computational power[2], (around hash
operations), making attacks unfeasible forthe
time being. For applications that require
additional levels ofsecurity, the SHA-2 has been
introduced. This algorithm outputsa DM with
size from 224 to 512 bits.The SHA-1 was
approved by the National Institute of
Standardsand Technology (NIST) in 1995 as an
improvement to theSHA-0. SHA-1 quickly
found its way into all major security
applications,such as SSH, PGP, and IPSec. In
2002, the SHA-2 [3]was released as an official
standard, allowing the compressionof inputs up
to 2128bits.

To enforce the security in general purpose
processors (GPPs)and to improve performance,
cryptographic algorithms have tobe applied at
the hardware level, for example in the
attestationof external memory transactions.
Specialized hardware coresare typically
implemented either as application-specific
integratedcircuit (ASIC) cores [4]–[6] or in
reconfigurable devices[7]–[10]. Some work has
been done to improve the SHA
computationalthroughput by unrolling the
calculation structure, butat the expense of more
hardware resources [11], [12].

In this paper, we propose an efficient hardware
implementationof SHA. Several techniques
have been proposed to improvethe hardware
implementation of the SHA algorithm, using
thefollowing design techniques:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

DOI: 10.21276/ijcesr.2018.5.1.5
25

• parallel counters and balanced carry save
adders (CSA), inorder to improve the partial
additions [4], [5], [7];
• unrolling techniques optimize the data
dependency and improvethe throughput [5], [9],
[11], [13];
• balanced delays and improved addition units;
in this algorithm,additions are the most critical
operations [4], [13];
• embedded memories store the required
constant values [8];
• pipelining techniques, allow higher working
frequencies[5], [14].

This work extends the ideas originally proposed
by the authorsin [15] and [16] and presents a
significant set of experimentalresults. Our major
contributions to the improvement ofthe SHA
functions hardware implementation can be
summarizedas follows:
• operation rescheduling for a more efficient
pipeline usage;
• hardware reuse in the DM addition;
• a shift-based input/output (I/O) interface;
• memory-based block expansion structures.
A discussion on alternative data block
expansion structure hasalso been introduced.

The fully implemented architectures proposed
in this paper,achieve a high throughput for the
SHA calculation via operationrescheduling. At
the same time, the proposed hardwarereuse
techniques indicates an area decrease, resulting
in asignificant increase of the throughput per
slice efficiencymetric. Implementation results
on several FPGA technologiesof the proposed
SHA, show that a throughput of 1.4 Gbit/s
isachievable for both SHA-128 and SHA-256
hash functions.For SHA-512 this value
increases to 1.8 Gbit/s. Moreover,a
Througput/Slice improvement up to 100% is
achieved, regardingcurrent state of the art.
The proposed SHA cores have also been
implemented withinthe reconfigurable co-
processor of a Xilinx VIRTEX II ProMOLEN
prototype [17]. The hybrid implementation
resultsindicate a 150 times speedup against pure
software implementations,and a 670%
Throughput/Slice improvement regardingrelated
art.

Fig. 1. SHA-1 round calculation

II. SHA-1 AND SHA-2 HASH FUNCTIONS
In 1993, the Secure Hash Standard (SHA) was
first publishedby the NIST. In 1995, this
algorithm was revised [18] in order toeliminate
some of the initial weakness. The revised
algorithm isusually referenced as SHA-1 (or
SHA128). In 2001, the hashingalgorithm, SHA-
2, was proposed. It uses larger DM, making
itmore resistent to possible attacks and allows it
to be used withlarger data inputs, up to 2128bits
in the case of SHA512. TheSHA-2 hashing
algorithm is the same for the SHA224,
SHA256,SHA384, and SHA512 hashing
functions, differing only in thesize of the
operands, the initialization vectors, and the size
ofthe final DM.
A. SHA128 Hash Function
The SHA-1 produces a single output 160-bit
message digest(the output hash value) from an
input message. The input messageis composed
of multiple blocks. The input block, of 512bits,
is split into 80× 32-bit words, denoted as Wt,
one 32-bitword for each computational round of
the SHA-1 algorithm, asdepicted in Fig. 1. Each
round comprises additions and
logicaloperations, such as bitwise logical
operations (ft) and bitwiserotations to the left
(RotLi). The calculation of ftdepends onthe
round being executed, as well as the value of
the constant Kt. The SHA-1 80 rounds are
divided into four groups of 20rounds, each with
different values for Kt and the applied
logicalfunctions (ft) [15]. The initial values of
the to variables inthe beginning of each data
block calculation correspond to thevalue of the
current 160-bit hash value, to . After the80
rounds have been computed, the to 32-bit values
areadded to the current DM. The Initialization
Vector (IV) or theDM for the first block is a
predefined constant value. The outputvalue is
the final DM, after all the data blocks have been
computed.In some higher level applications
such as the keyed-HashMessage Authentication
Code (HMAC) [19], or when a messageis

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

DOI: 10.21276/ijcesr.2018.5.1.5
26

fragmented, the initial hash value (IV) may
differ fromthe constant specified in [18].
B. SHA256 Hash Function
In the SHA256 hash function, a final DM of
256 bits is produced.Each 512-bit input block is
expanded and fed to the 64rounds of the
SHA256 function in words of 32 bits each
(denotedby Wt). Like in the SHA-1, the
datascrambling is performedaccording to the
computational structure depicted inFig. 2 by
additions and logical operations, such as bitwise
logicaloperations and bitwise rotations. The
computational structureof each round, where the
input data is mixed with the currentstate, is
depicted in Fig. 2. Each Wt value is a 32-bit
data wordand Ktis the 32-bit round dependent
constant.The 32-bit values of the to variables
are updated in eachround and the newvalues are
used in the following round. The IVfor these
variables is given by the 256-bit constant value
specifiedin [18], being set only for the first data
block. The consecutivedata blocks use the
partial DM computed for the previousdata
block. Each SHA-256 data block is processed in
64rounds, after which the values of the
variables to are addedto the previous DM in
order to obtain a new value for the
DM.Comparing Figs. 1 and 2, is it noticeable a
higher computationalcomplexity of the SHA-2
algorithm in comparison to the SHA-
1algorithm.

 Fig. 2. SHA-2 round calculation

C. SHA512 Hash Function
The SHA512 hash algorithm computation is
identical to thatof the SHA256 hash function,
differing only in the size of theoperands, 64 bits
instead of 32 bits as for the SHA256. The
DMhas twice the width, 512 bits, and different
logical functions areused [18]. The values K t
and W t are 64 bits wide and eachdata block is
composed of 16 × 64-bit words, having in
total1024 bits.

Fig. 3. Message padding for 512 bit data blocks.

D. Data Block Expansion for SHA Function
The SHA-1 algorithm computation steps
described in Fig. 1are performed 80 times
(rounds). Each round uses a 32-bit
wordobtained from the current input data block.
Since each inputdata block only has 16× 32-bits
words (512 bits), the remaining64 ×32-bit
words are obtained from data expansion. This
expansionis performed by computing (1), where
Mt

(i) denotes thefirst 16 ×32-bit words of the th
data block

For the SHA-2 algorithm, the computation steps
shown inFig. 2 are performed for 64 rounds (80
rounds for the SHA512).In each round, a 32-bit
word (or 64-bit for SHA512) from thecurrent
data input block is used. Once again, the input
data blockonly has 16× 32-bits words (or 64-bit
words for SHA512), resultingin the need to
expand the initial data block to obtain
theremaining words. This expansion is
performed by the computationdescribed in (2),
where Mt

(i) denotes the first 16 words ofthe th
data block and the operator + describes the
arithmeticaddition operation

E. Message Padding
In order to assure that the input data block is a
multiple of 512bits, as required by the SHA-1
and SHA256specification, theoriginal message
has to be padded. For the SHA512 algorithmthe
input data block is a multiple of 1024 bits.
The padding procedure for a 512 bit input data
block is asfollows: for an original message
composed of bits, the bit “1”is appended at the
end of the message (the bit), followedby zero
bits, were k is the smallest solution to the
equationn+1+k=448 mod 512. These last 64 bits
are filled withthe binary representation of , the
original message size. Thisoperation is better

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

DOI: 10.21276/ijcesr.2018.5.1.5
27

illustrated in Fig. 3 for a message with 536bits
(010 0001 1000 in binary representation).

For the SHA512 message padding, 1024-bit
data blocks areused and the last 128, not 64 bits,
are reserved for the binaryvalue of the original
message. This message padding operation can
be efficiently implemented in software.

III. PROPOSED DESIGN FOR SHA-1

In order to compute the values of one SHA-1
round, depictedin Fig. 1, the values from the
previous round are required.This data
dependency imposes sequentiality, preventing
parallelcomputation between rounds. Only
parallelism withineach round can be efficiently
explored. Some approaches [11]attempt to
speedup the processing by unrolling each
roundcomputations. However, this approach
implies an obviousincrease in circuit area.
Another approach [12], increases thethroughput
using a pipelined structure. Such an approach,
however,makes the core inefficient in practical
applications, sincea data block can only be
processed when the previous one hasbeen
completed, due to the data dependencies of the
algorithm.In this paper, we propose a functional
rescheduling of theSHA-1 algorithm as
described in the work [15], which allowsthe
high throughput of an unrolled structure to be
combined witha low hardware complexity.
A. Operations Rescheduling
From Fig. 1, it can be observed that the bulk of
the SHA-1round computation is oriented
towards the value calculation.The remaining
values do not require any computation,
asidefrom the rotation of B. The needed values
are provided by theprevious round values of the
variables A to D. Given that thevalue of
depends on its previous value, no parallelism
can bedirectly exploited, as depicted in (3)

In (4), the term of (3) that does not depend on
the value ofis precomputed, producing the carry
(βt) and save (St) vectorsof the partial addition

The calculation of , with the precomputation, is
described bythe following:

By splitting the computation of the value and by
reschedulingit to a different computational
round, the critical path of theSHA-1 algorithm
can be significantly reduced. Since the
calculationof the function f(B.C,D) and the
partial addition areno longer in the critical path,
the critical path of the algorithmis reduced to a
three-input full adder and some additional
selectionlogic, as depicted in Fig. 4. With this
rescheduling, anadditional clock cycle is
required, for each data block, since inthe first
clock cycle the value of is not calculated (A-1 is
notused). Note that in the last cycle the values
of B81,C81,D81 ,and E81 are not used as well.
The additional cycle, however,can be hidden in
the calculation of the DM of each input
datablock, as explained further on.After the 80
SHA-1 rounds have been computed, the
finalvalues of the internal variables (A to E) are
added to the currentDM. In turn, the DM
remains unchanged until the end of eachdata
block calculation [15]. This final addition is
performed byone adder for each 32 bits portion
of the 160-bit hash value.However, the addition
of the value DM0 is directly performedby a
CSA adder in the round calculation. With this
option, anextra full adder is saved and the value
DM0 calculation, thatdepends on the value A ,
is performed in one less clock cycle.Thus, the
calculation of all the DMj is concluded in the
samecycle.

Fig. 4. SHA-1 rescheduling and internal
structure.

B. Hash Value Initialization

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

DOI: 10.21276/ijcesr.2018.5.1.5
28

For the first data block the internal hash value
(DM0) is initialized,by adding zero to the
Initialization Vector (IV). This
initial value is afterwards loaded to the internal
registers (B toE), through a multiplexer. In this
case, the value of DM0 is not
set to the register A . Instead, A is set to zero
and DM0 is directlyintroduced into the
calculation of A, as described in (6)

The IV can be the constant value defined in [18]
or an applicationdependent value, e.g., from the
HMAC or from the hashingof fragmented
messages. In applications, where the IV is
alwaysa constant, the selection between the IV
and the current hashvalue can be removed and
the constant value set in the DM registers.In
order to minimize the power consumption, the
internalregisters are disabled when the core is
not being used.

C. Improved Hash Value Addition
After all the rounds have been computed, for a
given datablock, the internal variables have to
be added to the current DM.This addition can
be performed with one adder per each 32 bitof
the DM, as depicted in Fig. 4. In such structure,
the additionof through with the current DM
requires four additionaladders. Taking into
account that

the computation of the DM from the data block
can be calculatedfrom the internal variable B ,
as

Fig. 5. Alternative SHA-1 DM addition.

Thus, the calculation can be performed by just a
single additionunit and a multiplexer unit, used
to select between the valueB and its bitwise
rotation, RotL30. The rot() function in
(9)represents the optional rotation of the input
value

The alternative hardware structure for the
addition of the values Bto E with the current
DM is depicted in Fig. 5.
D. SHA-1 Data Block Expansion
For efficiency reasons, we expand the 512 bits
of each datablock in hardware. The input data
block expansion describedin (1), can be
implemented with registers and XOR
operations.Finally, the output value Wt is
selected between the original datablock, for the
first 16 rounds, and the computed values, for
theremaining rounds. Fig. 6 depicts the
implemented structure. Partof the delay
registers have been placed after the calculation,
inorder to eliminate this computation from the
critical path, sincethe value Wtis connected
directly to the the SHA-1 core. The one bit
rotate-left operation can be implemented
directly in therouting process, not requiring
additional hardware.

IV. SHA IMPLEMENTATION
In order to evaluate the proposed SHA designs,
they havebeen implemented as processor cores
on a Xilinx VIRTEX IIPro (XC2VP30–7)
FPGA. All the values presented in this paperfor
the proposed cores were obtained after Place
and Route. When implementing the ROM used
to store the valuesof SHA256 or SHA512, the
FPGA embedded RAMs (BRAMs)have been
efficiently employed. For the SHA256
structure, asingle BRAM can be used, since the
64 32-bits fit in a single32-bit port embedded
memory block. Since BRAMs have dualoutput
ports of 32 bits each, the 80 ×64-bit SHA-512
constantscan be mapped to two 32-bit memory
ports; one port addressesthe lower 32 bits of the
constant and the other, the higher partof the
same constant. Thus, only one BRAM is used to
store the64-bit Kt constants.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

DOI: 10.21276/ijcesr.2018.5.1.5
29

A. Discussion on Alternative Data Block
Expansion Structures
Alternatively to the register-based structure
presented inFig. 6, other structures for the SHA-
1 data block expansion canbe implemented.
One is based on memory blocks addressedin a
circular fashion. In the
presentedimplementation, theVIRTEX II
embedded RAMs (BRAMs) are used. The
otherstructure is based on first-inputs–first-
outputs (FIFOs).A16-word memory is used to
store the values with 14 (wt-14)and 16 (wt-16)
clock cycles delay. In order to use the dual
portBRAMs, the address of the new value has
to be the same as thelast one, thus the first and
the last position of the circular buffercoincide.
For

Fig. 5. BRAM-based data block expansion unit.

this scheme to work properly, the memory
mustallowfor write after read (WAR). This
however, is only availableon the VIRTEX II
FPGA family. In technologies whereWAR isnot
available, the first and last position of this
circular memorycan not coincide, thus an
additional position in the memory isrequired as
well as an additional port. The wt-14 can be
addressedby using the wt-16 (=Wt) address value
subtracted by2. Identically, the wt-3address can
be obtained by subtracting5 from the wt-8
address. The implementation of the 16 bit
positioncircular memory can be done by
chaining two eight positionscircular memories,
thus requiring less memory for theentire unit, as
depicted in Fig. 5.

Fig. 6. FIFO-based data block expansion unit.

A16-word memory is used to

The data block expansion can also be
implemented withFIFOs. In technologies where

FIFOs can be efficiently used,the registers used
to create the temporal delay of Wtcan
bereplaced by FIFOs. The FIFOs start
outputting the valuesafter clock cycles, where is
the desired delay. The FIFOshave been
automatically generated by the tool fromXilinx. The
resulting computational structure is depicted inFig.
10. Circular memories can also be used. For this
structure(FIFO-MEM-based), modulo 5 and modulo
6 counters haveto be used, as well as memories that
do not require the WARmode.In order to completely
evaluate the proposed structures, theyhave been
implemented on a Xilinx VIRTEX II FPGA.
Theobtained results are presented in Table I. From
Table I, it canbe concluded that when memories
with WAR mode are available,the memory-based
implementation is more efficient. It requiresonly 38
slices and two 32 ×8 bit memories, resulting ina
slice occupation of only 30% of the register-based
approach,at the expense of two BRAMs. When,
only, memories withoutWAR mode are available, a
reduction of 35% in terms of sliceusage can still be
achieved, at the expense of two embeddedRAMs.
These data block expansion structures for the SHA-
1 algorithm can be directly mapped to the data block
expansionof the SHA-2 algorithm. For the
remainder of this paper, onlythe register-based
unit is considered, in order to obtain less
technologydependent experimental results.
TABLE I
SHA-1 DATA BLOCK EXPANSION UNIT
COMPARISON

TABLE II
SHA-1 DM ADDITION COMPARISON

V. PERFORMANCE ANALYSIS AND
RELATED WORK

In order to compare the architectural gains of
the proposedSHA structures with the current
related art, the resulting coreshave been
implemented in different Xilinx devices.
A. SHA-1 Core

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

DOI: 10.21276/ijcesr.2018.5.1.5
30

In order to compare the efficiency of the DM
additionthrough shift registers proposed in
Section III-C, the SHA-1algorithm with
variable IV has been implemented with
bothpresented structures. Table II presents the
obtained results for arealization on the VIRTEX
II Pro FPGA. The obtained figuressuggest an
area reduction of 5% with no degradation on
theachievable frequency, resulting in a
Throughput/Slice increasefrom 2.4 to 2.5 Mbit/s. In
technologies where full addition unitsare more
expensive, like ASICs, even higher improvements
canbe expected.
The SHA-1 core has also been implemented on a
VIRTEX-E(XCV400e-8) device (Column Our-Exp.
in Table III), in orderto compare with [11]. The
presented results in Table III for theVIRTEX-E
device are for the SHA-1 core with a constant
initializationvector and without the data block
expansion module.When compared with the folded
SHA-1 core proposed in [11],a clear advantage can
be observed in both area and
throughput.Experimentations suggest 20% less
reconfigurable hardwareand 27% higher throughput,
resulting in a 57% improvementon the
Throughput/Slice (TP/Slice) metric. When
comparedwith the unfolded architecture, the
proposed core has a 28%lower throughput, however,
the unrolled core proposed in [11]requires 280%
more hardware, resulting in a TP/Slice,
2.75times smaller than the core proposed in this
paper.Table III also presents the SHA-1
corecharacteristics for theVIRTEX II Pro FPGA
implementation. Both the core with aconstant
initialization vector (Our-Cst.) and the one with
a variableIV initialization (Our+IV) are
presented. These results alsoinclude the data
block expansion block.When compared with the
leading commercial SHA-1 corefrom Helion
[21], the proposed architecture requires 6%
lessslices while achieving a throughput 18%
higher. These two resultssuggest a gain on the
TP/Slice metric of about 29%.For the SHA-1
core capable of receiving an IV other than
theconstant specified in [18], a slight increase in
the required hardwareoccurs. This is due to the
fact that the IV can no longerbe set by the
set/reset signals of the registers. This however
hasa minimal effect in the cores performance,
since this loadingmechanism is not located in
the critical path. The decrease ofthe
Throughput/Slice metric, from 2.7 to 2.5,
caused by the additionalhardware for the IV
loading is counterbalanced by thecapability of

this SHA-1 core (Our+IV) to process
fragmentedmessages.
B. SHA 256 Core
The proposed SHA256 hash function core has
been also comparedwith the most recent and
most efficient related art. Thecomparison
figures are presented in Table IV. When
comparedwith the most recent academic work
[13], [22] the results showhigher throughputs,
from 17% up to 98%, while achieving
areduction in area above 25% up to 42%. These
figures suggesta significant improvement to the
TP/Slice metric in the range of 100% to 170%.
When compared with the commercialSHA256
core from Helion [23], the proposed core
suggests anidentical area value (less 7%) while
achieving a 40% gain to thethroughput,
resulting in an improvement of 53% to the
TP/Slicemetric. The structure proposed by
McEvoy [13] also has messagepadding
hardware, however, no figures are given for
theindividual cost of this extra hardware. This
message padding isperformed once at the end of
the message, and has no significantcost when
implemented in software. Thus, the majority of
theproposed cores do not include the hardware
for this operation.
C. SHA 512 Core
Table V presents the implementation results for
our SHA512core and the most significant
related art, to out best knowledge.When
compared with [22], our core requires 25% less
reconfigurablelogic while a throughput increase
of 85% is achieved,resulting in a TP/Slice
metric improvement of 165%. From allknown
SHA512 cores, the unrolled core proposed by
Lien in[11] is the only one capable of achieving
a higher throughput.However, this throughput is
only slightly higher (4%), but requirestwice as
much area as our proposal and indicates a 77%
higher TP/Slice metric. It should also be noticed
that, the resultspresented by Lien in [11] do not
include the data expansionmodule, which would
increase the required area even further.
D. Integration on the MOLEN Processor
In order to create a practical platform where the
SHA corescan be used and tested, a wrapping
interface has been addedto integrate these units
in the MOLEN polymorphic processor.The
MOLEN operation [17], [24] is based on the
coprocessorarchitectural paradigm, allowing the
usage of reconfigurablecustom designed
hardware units. The MOLEN

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

DOI: 10.21276/ijcesr.2018.5.1.5
31

computationalparadigm enables the SHA cores
to be embedded in a reconfigurablecoprocessor,
tightly coupled with the GPP. Theconsidered
polymorphic architecture prototype uses the
FPGAwith an embedded PowerPC, running at
300 MHz as the coreGPP, and a main data
memory running at 100 MHz.
Theimplementation is identical to the one
described in [25].For this coprocessor
implementations of the SHA hashfunctions, the
SHA128, SHA256, and SHA512 cores, withIV
loading, have been used. Implementations
results of theSHA128 CCU indicate a device
occupation of 813 slices, usinga total of 6% of
the available resources on a XC2VP30 FPGA.
In this functional test the CCU is running with
same clockfrequency as the main data memory,
operating at 100 MHz,thus achieving a
maximum throughput of 623 Mbit/s.
Whencompared with the
puresoftwareimplementations, capable
ofachieving a maximum throughput of 4 Mbit/s
and 5 Mbit/s forSHA128 and SHA256,
respectively, the usage of this hybridHW/SW
approach allows for a speedup up to 150
times.The CCUs for the SHA256 and SHA512
cores require 994and 1806 Slices using in total
7% and 13% of the available
resources,respectively. At 100 MHz, the SHA-2
CCUs are capableof achieving a maximum
throughput of 785 Mbit/s forSHA-256 and 1.2
Gbit/s for the SHA-512 hash function.
TABLE III
SHA-1 CORE PERFORMANCE
COMPARISONS

VI. CONCLUSION

We have proposed hardware rescheduling and
reutilizationtechniques to improve SHA algorithm
realizations, both inspeed and in area.With operation
rescheduling, the critical pathcan be reduced in a
similar manner to structures with loop
unrolling,without increasing the required hardware,
also leadingto the usage of a well balanced pipeline
structure. An efficienttechnique for the addition of
the DM is also proposed. Thistechnique allows for a

substantial reduction on the requiredreconfigurable
resources, while concealing the extra clockcycle
delay introduced by the pipeline.Implementation
results clearly indicate significant performanceand
hardware gains for the proposed cores when
comparedto the existing commercial cores and
related academiaart. Experimental results for hybrid,
hardware/software, implementationsof the SHA
algorithms suggest a speed up of150 times for both
hashcomputations regarding pure
softwareimplementations.

REFERENCES
[1] V. Klima, “Finding MD5 collisions—A toy for a
notebook.” CryptologyePrint Archive, 2005/075,
2005.
[2] X.Wang, Y. L. Yin, and H. Yu, “Finding
collisions in the full SHA-1,”in CRYPTO, V. Shoup,
Ed. New York: Springer, 2005, vol. 3621,Lecture
Notes in Computer Science, pp. 17–36.
[3] National Institute of Standards and Technology
(NIST), MD, “FIPS180–2, secure hash standard
(SHS),” 2002.
[4] L. Dadda, M. Macchetti, and J. Owen, “The
design of a high speedASIC unit for the hash
function SHA-256 (384, 512),” in Proc.
DATE,2004, pp. 70–75.
[5] M. Macchetti and L. Dadda, “Quasi-pipelined
hash circuits,” in ProcIEEE Symp. Comput.
Arithmetic, 2005, pp. 222–229.
[6] L. Dadda, M. Macchetti, and J. Owen, D.
Garrett, J. Lach, and C. A.Zukowski, Eds., “An
ASIC design for a high speed implementation ofthe
hash function SHA-256 (384, 512),” in Proc. ACM
Great LakesSymp. VLSI, 2004, pp. 421–425.
[7] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P.
Bellows, J. Flidr, TLehman, and B. Schott,
“Comparative analysis of the hardware
implementationsof hash functions SHA-1 and SHA-
512,” in ISC,A.H. Chanand V. D. Gligor, Eds. New
York: Springer, 2002, vol. 2433, LectureNotes in
Computer Science, pp. 75–89.
[8] M. McLoone and J. V. McCanny, “Efficient
single-chip implementationof SHA-384&SHA-
512,” in Proc. IEEE Int. Conf. Field-Program.
Technol., 2002, pp. 311–314.
[9] N. Sklavos and O. Koufopavlou,
“Implementation of the SHA-2 hashfamily standard
using FPGAs,” J. Supercomput., vol. 31, pp. 227–
248,2005.
[10] K. K. Ting, S. C. L. Yuen, K.-H. Lee, and P. H.
W. Leong, “An FPGAbased SHA-256 processor,” in
FPL, M. Glesner, P. Zipf, and M. Renovell,Eds.
New York: Springer, 2002, vol. 2438, Lecture Notes
inComputer Science, pp. 577–585.

