

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

17

EFFICIENT FEATURE RICH DATASETS FOR DATA SCIENCE

ALGORITHMS
Karthik Pai B H1, Sampath Kini K2

1Associate Prof, Dept of Information science and Engineering, NMAMIT, Nitte, Karkala, India,
2Assistant Prof, Dept of Computer science and Engineering, NMAMIT, Nitte, Karkala, India

Abstract
One of the key data structures used in data
science and mining algorithms is datasets of
numerical elements. Traditional datasets
represent a collection of data items that
support read/write operations of data
elements. Data science and mining algorithms
use these data structures for processing data
elements in the memory. It is observed that
aggregate operations such as max, min, sum,
average, and variance are quite often used by
most of the data mining algorithms.
Programming languages come with library of
variety of data structures to represent
collection of data elements. For example, Java
supports collection classes such as ArrayList,
HashMap to represent collection of elements
in the memory. However, these collections
classes do not provide in-built aggregate
operations on data elements. This research
paper explains the efficient techniques that
can be used to perform aggregate operations
on datasets using multithreading/multicore
technologies. This research paper also
compares elapsed time determined for
aggregate operations with and without
multithreading options for varying sizes of
datasets
Index Terms: Dataset, data science,
Aggregate functions, data mining,
multithreading, multicore

I. INTRODUCTION
Most of the data mining algorithms apply
aggregate methods on collection of data elements.
Aggregate methods are typically used to
summarize the statistical analysis. For example,
maximum sales of a product or average score of

sports person. Programming languages such as
Java comes with library of collection classes to
represent container of data elements. These
classes provide methods for inserting, deleting
and reading of elements. Since these classes do
not have methods for performing aggregate
operations such as max, min, sum, average,
programmers themselves need to write software
code to determine aggregate values of datasets
by sequentially going over dataset elements.

This research paper captures efficient technique
used for performing aggregate operations on
elements of dataset. Traditional technique is to
run through all elements of dataset sequentially
in a single thread. Enhanced technique is to split
the dataset into multiple partitions, perform
aggregate operation on each partition on multiple
cores simultaneously and finally combine the
results obtained from each partition. Java’s
Executor service framework is used for
performing aggregate operation of a partition on
a core. Additionally, this enhanced dataset
implementation provides a mechanism to cache
already determined aggregate values of a dataset
elements. This caching is achieved by this
enhanced dataset with the usage of placeholder
variables for already computed aggregate values.
These partitioning, multithreading and caching
techniques will help to gain performance
improvements when aggregate methods are
invoked by data mining algorithms. Experiments
were conducted for aggregate methods max,
average, variance on a dataset of varying sizes.

The objective of this paper is implemented in two
stages. 1) Determining elapsed time with single
and with multiple threads. 2) Presentation and

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

18

analysis of elapsed time for all the approaches.
Elapsed time is recorded after performing
aggregate operations on a collection of data
elements. Thereafter, recorded values are used to
present the analysis.

This paper is organized as follows. In section II,
Details of master slave approach is described. In
section III, dynamics of master slave design is
captured. In section IV, Usage of master slave
design for performing aggregate operations on
multiple cores. In section V, results in terms of
elapsed time taken by aggregate operations are
presented. In section VI, conclusions about
aggregate operations on datasets using
multicores are drawn.

II. MASTER SLAVE DESIGN
As described in [1, 2], A master element splits
the job into various similar slave elements. It
computes a final result from the results obtained
from these slaves. Figure (1) shows class
structure of the master slave design.

Master element:
 It applies the ‘divide and conquer’

principle for job split.
 It implements functions for job split into

various equal sub tasks.
 It starts and controls processing and

computing a final result from all the results
from slaves.

 It also manages references to all slaves
instances to which it submits the
computation of subtasks.

Slave component:
 Exposes a sub-service that can compute the

subtasks delegated by the master
 There will be at least two instances of the

slave elements connected to the master

Figure 1. master-slave design with help of a
class diagram

III. DYNAMICS OF MASTER SLAVE

DESIGN
Figure (2) shows object interaction among client,
master and slaves during runtime operation. As
described in [1, 2], The scenario comprises six
phases:
 A client puts a request for the master.
 The master does job split into equal various

sub-tasks.
 The master delegates the computation of sub-

tasks to various slaves, initiates their
execution and waits for their results.

 The slaves execute sub-tasks and return the
results of their execution to the master.

 The master determines a final result for the
entire job from the sub results obtained from
the slaves.

 The master forwards this result back to the
client.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

19

Figure 2. Object interaction diagram showing a
runtime scenario of master-slave design

IV. USAGE OF MASTER SLAVE DESIGN FOR

PERFORMING AGGREGATE FUNCTIONS
The collection class supporting aggregate
methods will play the role of master. In this case
study, the java collection class ArrayList is used
to represent dataset. The client will invoke
aggregate method implemented as part of dataset
implementation. This will trigger job split where
in entire dataset is partitioned into number of
cores available in the computing system. Each
partition is represented by the slave class
callableArrayList. Each instance of this class
will be running on individual core assigned by
Executer service class. That means, each
instance will be computing aggregation on its
own dataset partition assigned by master.
Finally, the master will combine the results
returned by each of the slave instances; it caches
the result in instance variables and sends the
result back to client. Figure (3) shows java
classes developed using master slave design
approach. The class AggrArrayList will act as
master class. The class ArraListCallable will act
as slave class. This slave class does implement
callable interface for it to be running on
individual core assigned by the class
ExecuterService. Figure (4) shows object
interaction among client, AggrArrayList the
master and object instances of ArrayListCallable
the slaves.

Figure 3. Class diagram showing the java classes
designed for experiments

Figure 4. Object interaction diagram showing a
scenario of performing max aggregate operation

V. RESULTS OF EXPERIMENTS
Observed and recorded elapsed time for all the
runs is shown via graph.(Figure 4,5,6).These
experiments were conducted on a data set of
numerical elements of type Double in Java
programming language. Varying workload unit
(number of elements) is as shown in the graph.
Experiments were conducted on following
system environment.

 Processor: Intel(R) Pentium(R) CPU
N3540 @2.16GHZ

 RAM : 4GB
 No: of cores: 4
 System type: windows 8.1, 64 bit, x-64

based processor
 Java/JVM: 1.8

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-1, 2018

20

0

2

4

6

8

10

12

14

16

Elapsed
Time(ms)
No: of

cores: 1

Elapsed
Time(ms)
No: of

cores: 2

Elapsed
Time(ms)
No: of

cores: 3

Elapsed
Time(ms)
No: of

cores: 4

50000 elements

80000 elements

100000 elements

Figure 5. . Elapsed time determined with
multicores on max aggregate operation

0

2

4

6

8

10

12

14

16

Elapsed
Time(ms)
No: of

cores: 1

Elapsed
Time(ms)
No: of

cores: 2

Elapsed
Time(ms)
No: of

cores: 3

Elapsed
Time(ms)
No: of

cores: 4

50000 elements

80000 elements

100000 elements

Figure 6. Elapsed time determined with
multicores on avg aggregate operation

0

5

10

15

20

25

Elapsed
Time(ms)
No: of

cores: 1

Elapsed
Time(ms)
No: of

cores: 2

Elapsed
Time(ms)
No: of

cores: 3

Elapsed
Time(ms)
No: of

cores: 4

50000 elements

80000 elements

100000 elements

Figure 7. Elapsed time determined with
multicores on variance aggregate operation

VI. CONCLUSIONS
o This research provides experimental

findings of aggregate operations on
datasets using multithreading concept.

o Elapsed time is determined with varying
size of datasets on multicores for aggregate
operations.

o Comparison in terms of elapsed time across
multiple threads is drawn.

o Provides feature rich efficient dataset
implementation which is used by data
science computing algorithms

o This reusable design approach can be used
for bigger datasets distributed over several
data nodes over network.

VII. REFERENCES
 [1] Buschmann, F., Henney, K. and Schmidt,
D.C., Pattern-Oriented Software Architecture
Volume 5: On Patterns and Pattern Languages.
Wiley Series in Software Design Patterns. John
Wiley and Sons Ltd, 2007

[2] Electronic Notes in Theoretical Computer
Science Volume 299, 25 December 2013, Pages
53-60

