

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-12, 2018

100

REUSABILITY AND MAINTAINABILITY IN OBJECT

ORIENTED LANGUAGES
Suvarnalata Hiremath1, C M Tavade2

1Associate Professor, Dept. of CS&E, BKEC,
Basavakalyan, India,

2Professor, Dept of E&TC, SIT-COE, Yadrav, India

Abstract
In object-oriented languages, inheritance
plays an important part for software
reusability and maintainability. The
separation of sub typing and inheritance
makes inheritance a more flexible
mechanism reusing code. Object-oriented
programming has been widely acclaimed as
the technology that will support the creation
of reusable software, particularly because of
the "inheritance” facility. In this paper, we
explore the importance of reusability and
maintainability in object oriented language.
KEYWORDS: Object Oriented
programming Language, Inheritance,
Software reuse and maintainability.

I. INTRODUCTION

Object-Oriented Programming (OOP) is the term
used to describe a programming approach based
on objects and classes. The object-oriented
paradigm allows us to organise software as a
collection of objects that consist of both data and
behaviour. This is in contrast to conventional
functional programming practice that only
loosely connects data and behaviour.
The object-oriented programming approach
encourages:

• Modularisation: where the application
can be decomposed into modules.

• Software re-use: where an application
can be composed from existing and new
modules.

Object Oriented programming is a programming
style that is associated with the concept of Class,
Objects and various other concepts revolving
around these two, like Inheritance,
Polymorphism, Abstraction, Encapsulation etc.

Object Oriented Programming is a practical and
useful programming methodology that
encourages modular design and software reuse.
Object oriented Language make the promises of
reduced maintainance,code reusability,
improved reliability and flexibility and easier
maintenance through better data encapsulation.
To achieve these gains, object oriented
language introduce the concepts of objects,
classes, data abstraction and encapsulation,
inheritance and polymorphism.

In object oriented Language, the objects are
well-defined data structures coupled with a set
of operations, these operations are called
behavior and are only visible part of an object
and only these operations can manipulate the
objects. Each object itself is an instance of one
class and is represented by a collection of
instance variables, as defined by the class [1].
Each class also defines a set of named
operations called methods.A method defines the
behaviour of the objects that are created from
the class.

Inheritance is a technique that allows new class
from older. The new class is subclass and old
class is base/parent class. The subclass inherits
all features of parent class. The subclass can
add new features of their own in it. Inheritance

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-12, 2018

101

is used in several different ways. A subclass
can be modified to provide different or
additional behaviour from its super class.
Multiple inheritance allows for a class to
inherit traits from multiple classes and is
usually considered a dangerous design
mechanism.

II Literature Survey

As per the literature survey there has been
a lot of research done on reusability and
maintainability in object oriented language over
the years.

Li XuanDong and Zheng GuoLiang[1] In
object-oriented languages, encapsulation and in-
heritance play an important part for software
reusability and maintainability. The separation of
sub typing and inheritance makes inheritance a
more flexible mechanism reusing code. The main
enhanced flexibility is that it is allowed for
subclasses to redefine inherited methods to
change their specifications. However, it results in
an encapsulation issue derived from the
semantics of inheritance, which compromises
severely reusability and maintainability in object-
oriented languages. In this paper, we present a
modified inheritance mechanism, which
overcomes this encapsulation issue, and give its
denotation semantics. This modified in- heritance
mechanism has been introduced in NDOOP, an
object-oriented extension of Pascal we are
developing.

G. Butler L. Li I.A. Tjandra[2] Software design
is a difficult creative task learnt from long
experience. Reusable object-oriented design aims
to describe and classify designs and design
fragments so that designers may learn from other
peoples' experience. Thus, it provides leverage
for the design process.

Shuguang Hong Barbara Koelzer[3] Software
reusability has been regarded as one of the most
important areas for improving software
development
 productivity and quality in the 1990's. The
object-oriented approach to information systems
development has promised to achieve large-scale
software reuse. Object oriented analysis and
design methodologies have aimed at the
realization of the promised benefits; however, the
degree to which the methodologies support reuse

and deliver on this promise is an interesting, open
question.

Parul Gandhi Pradeep Kumar Bhatia[4]
Object-oriented metrics plays an import role in
ensuring the desired quality and have widely
been applied to practical software projects. The
benefits of object-oriented software
development increasing leading to development
of new measurement techniques. Assessing the
reusability is more and more of a necessity.
Reusability is the key element to reduce the cost
and improve the quality of the software.
Generic programming helps us to achieve the
concept of reusability through C++ Templates
which helps in developing reusable software
modules and also identify effectiveness of this
reuse strategy

The advantage of defining metrics for templates
is the possibility to measure the reusability of
software component and to identify the most
effective reuse strategy. The need for such
metrics is particularly useful when an
organization is adopting a new technology, for
which established practices have yet to be
developed. Many researchers have done
research on reusability metrics

Alan Snyder[5] Object-oriented programming
is a practical and useful programming
methodology that encourages modular design
and software reuse. Most object-oriented
programming languages support data
Abstraction by preventing an object from being
manipulated except via its defined external
operations. In most languages, however, the
introduction of inheritance severely
compromises the benefits of this encapsulation.
Furthermore, the use of inheritance itself is
globally visible in most languages, so that
changes to the inheritance hierarchy cannot be
made safely. This paper examines the
relationship between inheritance and
encapsulation and develops requirements for
full support of encapsulation with inheritance.

1.1 Outcome of the literature survey
As per above papers we conclude that work
done on the inheritance features to maintain
more flexible mechanism for reusing code
and encourages maintainability in object
orientation languages.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-12, 2018

102

1.2 Objective
The main objective of this work is to examine
the duplicate and to avoid duplication and to
capture commonality in undertaking classes of
inherently similar task . Code that is organized
so that it is easy to find and fix errors and to
improve performance. Set of programming
idioms with other programmer which improves
communications.

III. Need of Reusability in OOL

One of the promises which object
oriented languages holds is that it enhances
software reusability. Indeed, software
components designed in Object oriented
languages are easier to be reused than those
designed in conventional programming.

The first thing here we discuss about is Code
Reuse. Code Reuse is probably one of the most
important part why we use Object Oriented
Programming languages in general.

The concept itself looks very easy. You have
written a class and some parts of your class like
some Methods or Attributes should be reused in
another class

Reusability is not an OOP term, it is about
reusing existing code to solve problems. This
way you don’t have to write the same thing
twice. Writing the same code twice obviously
means that you will spend more time on writing
code, but it has another disadvantage. If you
want to modify the code, for example fix a bug
in the algorithm or extend it with a new
parameter, then you have to modify it in two or
more different locations. Which means even
more typing, and more opportunity to add new
bugs to the code. So reusability is a must if you
want an maintainable code.

Reusability in OOP achieves through the
features of C++ where it possible to extend or
reuse the properties of parent class or super
class or base class in a subclass and in addition
to that, adding extra more features or data
members in the subclass or child class or
derived class. This whole set of mechanism is
known as Inheritance.

This helps in to use the same code over and
again without writing it multiple times which
saves time, coding effort and code reduction.

IV. Working with Reusability and
 Maintainability in OOL
The object orientation programming languages
classes can be reused in several ways. Once a
class has been written and tested, it can be
adapted by another programmer to suit their
requirements. This is basically done by creating
new classes, reusing the properties of the
existing ones. The mechanism of deriving a new
class from an old one is called inheritance. The
old class is referred to as the base class and the
new one is called the derived class or subclass.
A derived class includes all features of the
generic base class and then adds qualities
specific to the derived class.

Re usability is when a class inherits or
derives another class, it can access all the
functionality of the inherited class.

• Re usability enhanced reliability.
The base class code will be already
tested and debugged.
• Re usability saves the
programmer time and effort.
• As the existing code is reused, it
leads to less development and
maintenance costs.

Using Reusability , we have to write the
functions only one time instead of three times as
we have inherited rest of the three classes from
base class(Department).So ,maintainability
becomes easy and low cost.

V. CONCLUSION
In this paper we discussed how reusability and
maintainability has a relationship and an
important part for code reuse and also to

Class Department

Createstudents()

Averagemarks()

 Class
SectionA

Class
SectionB

Class
SectionC

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-12, 2018

103

examine the duplicate and to avoid duplication
and to capture commonality in undertaking
classes of inherently similar task On the
contrary, the basic idea of our work is that the
designers should know nothing about the
implementation of a class so that they can
define a class by inheritance and maintain a
class correctly and easily.

 REFERENCES
[1] A Modified Inheritance Mechanism
Enhancing Reusability and Maintainability in
Object-Oriented Languages Li XuanDong and
Zheng GuoLiang Department of Computer
Science Nanjing University, Nanjing Jiangsu,
P.R.China 210093

[2] Encapsulation and Inheritance in Object-
Oriented Programming Languages :Alan
Snyder

[3] Open Issues in Object-Oriented
Programming: OLE LEHRMANN MADSEN
Computer Science Dept., Aarhus University,
Ny Munkegade , DK-
8000 Aarhus C, Denmark (e-mail:
olmadsen@daimi.aau.dk)

[4] Do We Need Inheritance?: Wolfgang Weck
ETH Zürich Weck@inf.ethz.ch and Clemens
Szyperski
Queensland University of Technology
c.szyperski@qut.edu.au

[5] Inheritance and development of
Encapsulated software components: Alan
Snyder.

[6] Inheritance and Modularity in Specification
and Verification of OO Programs: Liu Yijing ;
Dept. of Inf., Peking Univ., Beijing, China ; Ali,
H. ; Qiu Zongyan.

[7]Object-oriented programming concepts:
Inheritance by Michelle Yaiser

mailto:olmadsen@daimi.aau.dk
mailto:Weck@inf.ethz.ch
mailto:c.szyperski@qut.edu.au

