

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-7, 2017

 1

MITIGATION OF TCP OUTCAST PROBLEM USING DCTCP
Rajashree1, Shruthi.M2, Swathi Pai M3

Assistant Professor Dept of Computer Science &Engineering
NMAM INSTITUTE OF TECHNOLOGY, NITTE

Karkala, Karnataka, India

Abstract
As the technology is improving day by day
and most of the services used by the mankind
are dependable on the internet, we need a
datacenter which stores huge amount of data
of multiple users and provides high
performance, reliability, scalability, fault
tolerant, flexibility and availability. Since the
Data Center mainly shares the resources
among multiple users there exist the problem
of throughput degradation in small flows thus
provides unfairness between the large flows
and small flows which is termed as TCP
Outcast Problem. TCP Outcast Problem is
reduced by using different queuing
mechanisms. In this paper Analysis of TCP
Outcast Problem for Data Center is done for
Drop Tail, RED and DCTCP using NS2
simulator, and the TCP Outcast Problem is
mitigated providing the best results with
DCTCP for all types of flows.
Keywords: TCP Outcast, RED (Random
Early Detection), DCTCP (Data Center
Transmission Control Protocol).

I. INTRODUCTION
Internet over the past few years has transformed
from an experimental system into a gigantic and
decentralized source of information. Large-scale
data centers enable the new era of cloud
computing [1] and provide the core infrastructure
to meet the computing and storage requirements
for the cloud based services. In Modern years
data centers [2] have emerged as the corner
stones of modern communication and computing
infrastructure. Data Center is a cluster of large
number of servers connected via shallow
buffered switches having many to one
communication pattern. Data Centers are mainly

used to store and process large amount of data of
multiple users and also provides high bandwidth,
low latency and limited size buffer. Data Centers
typically host many different classes of
applications that are independently owned and
operated by completely different entities- either
different customers or different divisions within
the same organization. Data Centers must
provide the main basic property of agility i.e, the
capacity to assign any server to any service. With
agility, the data center operator can meet the
fluctuating demands of individual services from
a large shared server pool, resulting in higher
server utilization and lower cost. Large-scale
data centers form the core infrastructure support
for the ever expanding cloud based services. The
main qualities of a Data Center networks are low
latency, high bandwidth, high availability, high
performance and storage infrastructure with low
cost commodity switches. Due to this, cloud
computing services make use of data center for
large scale general computation, web search and
cluster storage.

When dealing with the real time applications
with huge amount of data there exist different
types of traffic in Data Center Networks. They
are:
 (i) Mice Traffic or Query Traffic(<100KB)-
The volume of Query Traffic that is generated in
Data Center Networks is usually less and the
majority of the traffic in a data center network is
query traffic.(e.g. google search, facebook
updates, etc).
(ii) Cat Traffic(100KB-5MB) – The traffic is
generated due to control state and co-ordination
messages and the volume of the cat traffic is
more compared to Mice traffic. (e.g. small and
medium sized file downloads, etc).

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-7, 2017

 2

(iii) Elephant Traffic (>5MB) – Here the volume
of the traffic is extremely large which is
generated due to large software updates. (e.g.
anti-virus updates, movie downloads, etc).

Depending on the users Quality of service the

choice of protocol made by Data Center Network
is TCP [3]. TCP is the existing technology with
good reliability and congestion control features.
Though the scale of the internet and its usage is
increasing in recent years, TCP has evolved to
keep up with the changing network and has
proven to be scalable and robust. Still congestion
remains the major problem that affects the
Internet Service Quality, and the performance of
TCP in Data Center network has been a major
concern recently because it leads to major
challenges such as TCP Incast [4], TCP Outcast,
Queue Buildup and Buffer Pressure[5]. One of
the problem discussed in this paper is TCP
Outcast problem. The major approach to mitigate
the TCP Outcast problem is to use different
queuing techniques. In this paper RED queuing
technique is used to overcome the TCP Outcast
problem when compared to Drop Tail and it is
almost resolved using DCTCP Technique.

II. LITERATURE SURVEY

In modern era of distributed and parallel
computing, data of single user is stored on
different servers, so that one can fetch data in less
time. Low latency is becoming a major
performance requirement for DCNs because of
real-time nature of many popular applications,
whose performance is critical to service provider
industries. For example, in high frequency
trading where market data must come with
minimal latency (of the order of microseconds),
financial service providers rely on high speed
networks that must provide low latency to carry
these computational transactions. Similarly, in
retail web services, single page request may
require calling more than 100 services and
because these services can be dependent on each
other. Low latency is an important factor for user
experience. Many data center applications
require task completion within their
deadlines. If the deadlines miss, it may result in
bad user experience or failure of the job resulting
into revenue loss. In DCNs also, data is
distributed among multiple servers. When a user
fetches the data from multiple servers connected
via switch, each server responds to the user query
and each server tries to acquire the bottleneck

switch buffer. In this race, some of the
responders successively get the switch buffer,
while some of the packets are dropped due to
switch buffer overflow. These responders have
to wait for hundreds of RTT of DCNs because of
minimum retransmission time out (RTO) in
modern operating systems. This phenomenon
results in catastrophic throughput loss of DCNs.
This scenario is called TCP Incast (Y. Chen,
2009). TCP Incast occurs mainly due to bursty
mice traffic in DCNs. TCP Incast is common in
modern data centers because of traffic pattern
like web searches, when each server responds to
query. This problem also arises in data center
internal computation applications like map-
reduce (Dean and Ghemawat,2008). When
computation is done on different servers and
results are aggregated on single servers, each
server sends the map result simultaneously to
common server for aggregation of results. It is
not mandatory that TCP Incast arise only on ToR
switch. This throughput collapse can happen at
any switch layer. There may be two possible
ways to mitigate the TCP Incast problem. First,
stop the packet drop at switch port and second is
fast recovery of dropped packets. To stop the
dropping of packets, we need to notify the
receiver that there is congestion in the network
so that it will narrow down its congestion
window accordingly. But traditional TCP does
not notify the receiver about any congestion and
once it gets to know that packets are dropping, it
halves its congestion window. While default Min
RTO in modern Linux kernel is 200 ms, that’s
why responder has to sit idle for long time before
retransmission of packets. Buffer Pressure and
Queue Build-up in DCNs refer to queues getting
filled up or remaining full persistently. The short
flows experience delay due to packets of long
flows in the queue, this is known as Queue Build-
up (Alizadeh et al., 2010).

TCP Outcast problem occurs due to two

conditions, (i), When there are two different
flows available : small flows and large flows and
(ii), switches in DCNs use the droptail queue
management scheme. The queuing mechanism at
layer-2 switch is the key to improvement in
fairness and latency while achieving high
throughput. Although a data center usually
resides in a single building with very low
propagation delay, the high bandwidth and high
burstiness still create high queuing delay
resulting into high latency in traditional

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-7, 2017

 3

switches. Moreover, since non-cooperating
applications and multi-tenants coexist in data
center networks, fairness issue is better to be
tackled at switch level through queuing scheme.
There are different solutions available to TCP
Outcast such as, use Active Queue Management
(AQM) scheme for example Random Early
Detection (RED) (Floyd and Jacobson, 1993),
Stochastic Fair Queuing
(SFQ)(McKenney,1990), TCP Pacing
(Aggarwal et al., 2000) and equal length routing
(Prakash et al., 2012). In RED, packets are
marked randomly before the buffer queue is full
so that packets get dropped randomly at different
ports. RED queue management scheme achieves
RTT bias but is unable to provide true fairness in
DCNs (Prakash et al., 2012). In equal length
routing every packet traverses equal distance
rather than shortest available path and thus,
provides the fairness among the senders.
However, it will not work when the number of
flows in a set are different. SFQ gives the better
results than RED and equal length routing but
SFQ is not commonly available in commodity
switches because it is very complex and needs
extra overhead to maintaining multiple buckets.
TCP pacing reduces the unfairness in the
network but consecutive packet drops of small
flows are more in TCP pacing and it is also
inverse RTT biased. None of the solution of TCP
Outcast solves the problem completely and in
each case there is unfairness in throughput
between different flows and these solutions will
not mitigate the another problems in DCNs like
incast etc.

III. TCP OUTCAST

In DCN’s, Cloud resources such as CPU and
storage are shared among multiple users. Thus
when two users try to access data at the same
time from the common data center network
consisting of large no of flows and small set of
flows with two different input ports competing
for the same output port, the small set of flows
obtain lower throughput than the large set of
flows. This is termed as TCP Outcast Problem.
In a Data Center Network where the enormous
data transfer takes place the TCP Outcast
problem arises due to two main aspects:

1. Use of Drop Tail Queuing Mechanism.
2. In Many to one Communication between

large flows and small flows the smaller
flows gets outcasted by the larger flows
leading to packet degradation.

Due to the TCP Outcast problem the packet drop
takes place which leads to loss of data. Here
smaller flows are effected packet more due to the
inverse RTT bias method found in the Data
Center Network. In the Normal Networking
TCP’s throughput is inversely proportional to the
RTT. Hence low-RTT flows will get higher share
of bandwidth than high-RTT flows. But in Data
Center Networks RTT bias does not hold true
,and exhibits reverse RTT bias, where small set
of flows have lower RTTs then the large set of
flows consisting of lower throughput in smaller
flows leading to packet drop when compared to
higher RTT ones. Avoiding packet drop keeps
network bandwidth and permits congestion
signals to be propagated faster.

IV. QUEUE MANAGEMENT
ALGORITHMS

A. DropTail
Droptail is the simplest form of queuing
management and most commercial switches
make use of it. It entails packets entering the
buffers in a FCFS scheduling technique and after
the buffer space of the switch fills up, new
packets trying to enter at the tail end are dropped.
. In Drop Tail technique, a maximum queue size
is set for each queue which is usually the
physical buffer size. The arriving packets are
accepted since the maximum queue size is not
reached yet. Once the maximum queue length is
reached, the following incoming packets are
dropped until the queue size decreases as a result
of the leave of a packet from the head of the
queue.It allocates bandwidth according to the
packet at the top of the queue which has been
placed at the output port by the scheduler. This
process seems correct but does not prioritize
packets therefore important packets or packet
flows whose deadline to reach its destination is
near are not given priority in the allocation of
bandwidth; which can cause unnecessary
retransmission by the senders even though this
packets are received, as they are received after
the set RTT. This is one of the primary causes of
TCP Incast and Outcast whereby packets from
different flows are dropped, or even though a
packet is delivered or an ACK is received, the
packets are still retransmitted because the
receiver did not receive this packet before the
RTT expired. queue size control. RED detects
incipient congestion and provides feedback to
end hosts by dropping the packets. The
motivation behind RED is to keep the queue size

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-7, 2017

 4

small, reduce burstiness and solve the problem of
global synchronization.

B. Random Early Detection (RED)
RED was originally designed to solve the full

queue problems associated with tail drop queues.
The main objective of the Random Early
Detection algorithm is:

1. To minimize the packet loss and queuing
delay.

2. To avoid the global synchronization of
sources.

3. To maintain high link utilization.
4. Decrease the packet loss probability and

to minimize the overflow.
5. Decreasing the packet dropping

Probability.

RED[6] is referred in terms of distinguishing
constant congestion from transient upsurges,
distinguishing between different congestion
levels, and adjusting the packet dropping
probability based on the severity of the
congestion. This is because of the Drop
Activation Function that it uses
for congestion detection as well as the Drop
Probability Function used for congestion
notification, and queue size control. RED detects
incipient congestion and provides feedback to
end hosts by dropping the packets. The
motivation behind RED is to keep the queue size
small, reduce burstiness and solve the problem of
global synchronization. It is based on an average
queue length that is calculated using an
exponential weighted average of the
instantaneous queue length. RED drops packets
with certain probability depending on the
average length of the queue. The drop probability
increases from 0 to maximum drop probability
(maxp) as average queue size increases from
minimum threshold (min/h) to maximum
threshold (max/h)'. If average queue size goes
above (max/h), all packets are dropped. for
congestion detection as well as the Drop
Probability Function used for congestion
notification, and queue size control.

Fig 1: Random Early Detection.

A. DCTCP
DCTCP[7] has been proposed as a TCP

Variant for data centers to achieve high burst
tolerance, low latency and high throughput.
DCTCP achieves full throughput for the smaller
flows, compared to TCP. The mechanisms used
by DCTCP are a simple active queue
management scheme at the switch, based on
Explicit Congestion Notification (ECN), and a
window control scheme at the source which
reacts to ECN marks by reducing the window
size in proportion to the fraction of packets that
are marked (contrast this with TCP which always
cuts the window by half if at least one packet is
marked). The performance of DCTCP is
determined by two parameters: (i) K, the
marking threshold on the queue at the switch
above which all packets are marked; and (ii) g,
the weight used for exponentially averaging
ECN mark values at the source. The fairness
properties of DCTCP for flows with diverse
RTTs is better than TCP–Drop-tail and achieve a
better fairness than TCP–RED.

Algorithm:
A. Switch Side: DCTCP has only a single
parameter, the marking threshold, K. An arriving
packet is marked with the Congestion

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-7, 2017

 5

Experienced codepoint, if the queue occupancy
is greater than K upon it’s arrival, else it is not
marked. The RED marking scheme implemented
by most of the modern switches can be re-
purposed for DCTCP. We simply need to set
both the low and high thresholds to K, and mark
the packets based on instantaneous, instead of
average queue length.
B. Source Side: DCTCP is designed to
simultaneously achieve high throughput and
very low queue occupancies. It does this by
reducing its current window (hence, sending
rate) in proportion to the extent of congestion.
Specifically, a DCTCP source reduces its
window by a factor that is proportional to the
fraction of marked packets: the larger the
fraction, the larger the decrease factor. This is in
contrast to the behavior a TCP source which
reacts to marked packets by always halving its
window size.
C. ECN-Echo at the Receiver: The only
difference between a DCTCP receiver and a TCP
receiver is the way information in the Congestion
Experienced codepoints is conveyed back to the
sender. RFC 3168 states that a receiver sets the
ECN-Echo flag in a series of acknowledged
packets until it receives confirmation from the
sender (through the CWR flag) that the
congestion notification has been received. A
DCTCP receiver, however, tries to accurately
convey the exact sequence of marked packets
back to the sender. The simplest way to do this is
to ACK every packet, setting the ECN-Echo flag
if and only if the packet has a marked Congestion
Experienced codepoint. DCTCP receiver uses
the trivial two state state-machines to determine
whether to set ECN Echo bit. The states
correspond to whether the last received packet
was marked with the Congestion Experienced
codepoint or not. Since the sender knows how
many packets each ACK covers, it can exactly
reconstruct the runs of marks seen by the
receiver.
D. Controller at the Sender: The estimation of the
fraction of packets marked, for every window of
data (roughly one RTT) is as follows:

α← (1 - g) ×α + g × F------------(1)
Where, α is an estimation of the fraction
of packets marked.

F is the fraction of packets that
were marked in the last window of data.

0 < g < 1 is the weight given to
new samples against the past in the
estimation of α.

Given that the sender receives marks for every
packet when the queue length is higher than K
and does not receive any marks when the queue
length is below K. Equation (1) implies that α
estimates the probability that the queue size is
greater than K. Essentially, α close to 0 indicates
low, and α close to 1 indicates high levels of
congestion. DCTCP senders start gently
reducing their window as soon as the queue
exceeds K. This is how DCTCP maintains low
queue length, while still ensuring high
throughput.

IV. CONCLUSION
TCP is the heart of Internet since its

invention. But it has some shortcomings in
DCNs. Lower latency, fairness and higher
throughput are the basic requirements of DCNs,
which are not fulfilled by traditional TCP
variants. Thus DCTCP used in DCNs prove
better than the traditional TCP, which gives the
fairness to all hosts regardless of it being small
or large flows and mitigates the TCP outcast
problem compared to DropTail and Red.

V. REFERENCES
[1] Mohiuddin Ahmed, Abu Sina Md. Raju
Chowdhury, Mustaq Ahmed, Md. Mahmudul
Hasan Rafee ,”An Advanced Survey on Cloud
Computing and State-of the-art Research
Issues”, IJCSI International Journal of Computer
Science Issues, Vol. 9, Issue 1, No 1, January
2012
[2] C. Guo et al. Bcube: High performance,
server-centric network architecture for data
centers. In SIGCOMM, 2009
[3] A. Kabbani and B. Prabhakar. In defense
of TCP. In The Future of TCP:Train-wreck or
Evolution, 2008.
[4] Y. Chen, R. Griffith, J. L. A. J. R. H. K.
(2009). “Understanding TCP Incast Throughput
Collapse in Datacenter Networks”. Workshop on
Research in Enterprise Networks (WREN’09).
[5] Pawan Prakash, Advait Abhay Dixit, Y
Charlie Hu, and Ramana Rao Kompella. “The
TCP Outcast problem: Exposing unfairness in
DataCenter Networks”. In NSDI , pages 413426,
2012.
[6] S.Floyd, "TCP and Explicit Congestion
Control",ACM Computer Communication
review, V.24 N.5, p.1 0-23, October 1994.
[7] Floyd, S. and Jacobson, V. (1993).
Random early detection gateways for congestion

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-7, 2017

 6

avoidance. Networking, IEEE/ACM
Transactions on, 1(4):397 413.
[8] Mohammad Alizadeh, Albert Greenberg,
David A. Maltz, JitendraPadhye,Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. “Data Center TCP (DCTCP)”. In
Proceedings of the ACM SIGCOMM 2010
Conference , SIGCOMM 10, pages 6374. ACM,
2010.
[9] Aggarwal, A., Savage, S., and Anderson,
T. (2000). Understanding the performanceof
TCP Pacing. In INFOCOM 2000. Nineteenth
Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings.
IEEE, volume 3, pages1157–1165. IEEE.
[10] McKenney, P. E. (1990). Stochastic
fairness queueing. In INFOCOM’90, Ninth
Annual Joint Conference of the IEEE Computer
and Communication Societies. The Multiple
Facets of Integration. Proceedings, IEEE, pages
733–740. IEEE.
[11] Dean, J. and Ghemawat, S. (2008).
Mapreduce: simplified data processing on large
clusters. Communications of the ACM,
51(1):107–113.

