

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

7

FASTER QUERY RESULT RETRIEVAL APPROACHES FROM A
DATA WAREHOUSE: A SURVEY

Sonali Chakraborty1, Dr. Jyotika Doshi2
1Gujarat University, 2GLS University

Abstract
Any business organization has different
business processes with different
requirements and levels in an organization.
Because of the performance driven
requirement in case of OLTP (Online
Transaction Processing) system, there is a
need for a data warehouse for decision
making. Data extraction from a data
warehouse is a critical aspect as system may
take long time to run or sometimes the data
may not be available for longer period.
Probability that same query is fired many
times is also high and each time same query is
fired all data warehouse data is analyzed and
mined. This paper provides an overview of
different approaches, proposed or
implemented for faster retrieval of query
results from a data warehouse.
Index Terms: Approaches, Data warehouse,
faster execution time, Query Result Retrieval

I. INTRODUCTION
A. Requirements of a Business organization

Any business organization has different business
processes and there are different requirements
and levels in an organization. Single system
cannot provide all the information required by an
organization. Operational managers require
systems that will keep track of the elementary
activities i.e. Transaction Processing Systems
(TPS), which is computerized system providing
information. It performs and records daily
routine transactions necessary for conducting
business, answers routine questions and tracks
the flow of transactions [1]. Operational database
systems perform online transaction and query
processing using Online Transaction Processing
(OLTP) Systems. They are relational database
systems where performance is an important

factor as they are used to support the users [2].
The transaction data from TPS are summarized
and reported by middle managers through
Management Information System (MIS). This
information is used for monitoring and
controlling the business and predicts future
performance. For non- routine decisions for
middle management and for focusing on unique
and rapidly changing problems Decision Support
System (DSS) is used [1]. Because of the
performance driven requirement for OLTP
system, there is a need for a separate database for
decision making i.e. a data warehouse, which is
long term storage. [2].

B. About Data Warehouse
“A data warehouse is an integrated subject
oriented and time variant repository of
information in support of management’s
decision making process”. It gives the facility to
shred data load from OLTP systems which the
OLTP systems no longer requires. Data
warehouse is also useful as heterogeneous
database integration i.e. organizations collect
diverse data and maintain large databases from
multiple, heterogeneous distributed information
systems and store in data warehouse for querying
and analysis. In case of unavailability of data
warehouse, historical data can be downloaded to
CDs or tapes but it may not be available for
online queries. For constructing a data
warehouse, data cleaning, data integration and
data consolidation is required. [2,3]. ETL
(Extraction, Transformation, Loading) process is
considered as a backbone of data warehouse
architecture where newly inserted, updated, and
deleted information is extracted from the
sources, propagated in Data Staging Area where
their transformation, homogenization, and
cleansing is done. During transformation filters
and checks are done for ensuring that the data

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

8

transferred to the warehouse follow the business
rules and integrity constraints. Data is then
loaded in data warehouse. In case of traditional
data warehouse, ETL process periodically
refreshes the data warehouse during low-load
duration or when it is idle, periods of its
operation (e.g., every night) and it has a specific
time duration to complete. In case of business
necessities and demands near real-time data
warehouse refreshment is required [24].
Data warehouse queries are complex since they
involve computation of data groups and hence
data extraction from a data warehouse is critical
aspect since the system may take long time to run
or the data may not be available for longer period
[3, 25]. The quality of data provided to the
decision makers depends on the capability of the
data warehouse system to convey in a reasonable
time, from the sources to the data marts, the
changes made at the data sources. Most of the
design decisions are then concerned by the
choice of data structures and update techniques

that optimize the refreshment of the data
warehouse [5].

C. OLAP Queries
Data warehouse serves users or knowledge
workers i.e. managers, analysts, executives for
data analysis and decision making using Online
Analytical Processing (OLAP) systems. OLAP
queries need read-only access of the data for
performing summarization and aggregation.
OLAP queries in operational databases would
substantially degrade the performance of
operational tasks [3]. Primary concern in case of
ad hoc queries for a large data warehouse is that,
query performance degrades since they have to
go through large volumes of data after making
multiple joins. Probability that same query is
fired many times is also high and hence each time
same query is fired all data warehouse data is
analyzed [4]. In the current literature, different
approaches proposed or implemented for query
result retrieval from a data warehouse have been
summarized.

II. RELATED LITERATURE

Papers Issues dealt with Brief Description

Ashish Gupta
et al. [6]

Classification of the
view maintenance
problem.

 Illustrated that views may also be maintained
using the partial information in that view
depending on the type of modification
required i.e. insertion, deletion or update.

Ashish Gupta
et al. [7]

Incremental
Maintenance of Views

Proposed two algorithms
 Counting – in case of non-recursive views,

it computes only the view tuples which are
inserted or deleted at little or no cost.

 DRed - for recursive views, it first computes
an overestimate of deleted derived tuples
followed by pruning of overestimate. New
tuples which are to be added are then
computed through partially added
materialized views and by the changes made
to base relations.

Randall G.
Bello et al. [8]

Oracle Materialized
Views used for data
warehousing

 Based on inner or outer equi-joins with
aggregations that can be refreshed either on
demand or periodically.

 Optimization in materialized views
comprises of transparent query rewrites
based on cost- based selection method.

 Ability to rewrite a large class of queries
based on a small set of materialized views
is supported by using Dimensions,
losslessness of joins, functional
dependency, column equivalence, join
derivability, join back and aggregate rollup.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

9

 Explained the refresh algorithms for MJV
(Materialized Join View), MAV
(Materialized Aggregate View), and MV
(Materialized views) with subqueries along
with the concepts of dimension, query
rewrite concepts, general rewrite algorithm
and heuristic and cost based rewrite.

Dallan Quass
[9]

Materialized views
having aggregations

 Considers almost all SQL aggregate
functions such as count, sum, avg, min, and
max.

 Gives maintenance expression for insertions
and deletions through an aggregate operator
in a view definition in both cases i.e. in
presence and absence of max and min
aggregate functions.

Ashish Gupta
et al. [10]

Model for data
integration from
multiple databases
combined into an
integrated view which
is then materialized
and stored in database.

 Algorithms for incremental maintenance of
views using outer-join operator i.e. full
outer-join, left and right outer-joins, natural
full outer-joins.

 Depicted that outer-join views are usually
self-maintainable whereas match views, i.e.
full outer join views are always self-
maintainable.

Kenneth A
Ross et al.
[11]

Incremental
maintenance problem
of an SQL view in case
of database updates

 Depicted that it is possible to reduce the total
time cost of view maintenance by
materializing and maintaining additional
views and formulated to determine the
optimal set of additional views.

 Algorithm is implemented using DAG
which has operation nodes containing
operator and equivalence nodes having
edges to operation nodes.

Jingren Zhou
et al. [12]

View maintenance
overhead issues

 Introduction of lazy view maintenance
where updates need not maintain the views,
instead store sufficient information such that
affected views will be maintained later.

 Maintenance is done by the low-priority jobs
during system free cycles.

 In case a query requires a view before
update, then update is done transparently
before query access and the first beneficiary
bears the overhead.

Yue Zhuge et
al. [13]

View maintenance as
the data sources are
updated.

 Introduced algorithm called “Eager
Compensating Algorithm” (ECA) by
including compensating query which offsets
the effects of updates on result of
unanswered queries.

 Also introduced two streamlined versions of
the said algorithm for special cases of delete
and updates i.e. ECAK and ECAL.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

10

D. Agrawal et
al. [14]

Incremental view
maintenance

 The authors designed two algorithms i.e.
SWEEP and NESTED SWEEP for
incremental updates.

 SWEEP processes one update at a time on
the data warehouse and then constructs the
updated changes in the materialized view for
that update.

 NESTED SWEEP algorithm computes view
changes for multiple updates collectively
and does not require absolute quiescence
state but does requires a duration when
interfering updates should subside for
termination.

Surajit
Chaudhuri et
al. [15]

Query optimizing
problem in the
presence of
materialized view.

The authors proposed three steps for optimization.
 In the first step the query is translated into

unfolded form.
 In second step using one-level rule possible

ways are identified in which one or more
materialized views may be used to generate
alternative formulations of the query.

 Finally costs of alternative formulations are
generated and the execution plan with least
cost is selected.

Dimitri
Theodoratos
et al. [16]

Materializing selected
set of views to kept the
total query processing
cost and the view
maintenance cost at an
acceptable level.

 Modelling the problem using a state space
search algorithm after representing the
views using multiquery graphs where every
state is a multiquery graph of the view that
is materialized in the data warehouse.

Jonathan
Goldstein et
al. [17]

Materialized views in
case of aggregate
queries

 Algorithm to determine whether a part or all
of a query can be computed from
materialized view.

 Describes how they can be incorporated in
transformation based optimizers which
generates all possible rewritings of a query
expression, estimating their costs, and
choosing the one with the lowest cost.

Divesh
Srivastava et
al. [18]

Semantic approach to
detect when the
information in a view is
sufficient to answer the
query.

 If a query has grouping and aggregation but
the view does not have, then a view is usable
for answering the query only of there is
similarity between view and portion of
query.

 When the views have groupings and
aggregations we need to identify the
conditions under which the aggregation
information in the view is sufficient to
perform the aggregation computations
required in the query.

 Takes into consideration that the rewritten
query may be a union to single block queries
i.e. queries and views of the form :
SELECT, FROM, WHERE, GROUPBY,

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

11

HAVING and SELECT and HAVING may
contain aggregates such as MIN, MAX,
SUM, COUNT.

Sirirut
Vanichayobon
[19]

Identification of factors
to be considered for
selecting a proper
indexing technique for
data warehouse
applications.

 Explains different indexing techniques, i.e.
B-Tree Index, Projection Index, Bitmap
Index

 Summarizes the evaluation of these
techniques in a tabular form.

 Based on evaluation, the author concluded
the following:

a) B-Tree should only be used in case of
high cardinality data and predicted
queries.

b) Bitmap Indexes plays a key role in case
of data warehouse queries since they
have an ability to perform operations on
index level before retrieving base data
which speeds up query processing.

c) Variants of Bitmap index reduce storage
requirements and speeds up the
performance.

d) To speed up the queries further post
evaluation of query predicates using
Bitmap index, Projection index can be
used for column retrieval which satisfy
the predicates.

e) For selecting a suitable indexing
technique, an intelligent query optimizer
can be employed and developed using
data mining techniques.

Ladjel
Bellatreche et
al. [20]

Combination of
enhanced indexing
methods (join, bitmap),
materialized views and
data partitioning

 Experiment that the three major techniques
namely: enhanced indexing methods (join,
bitmap), materialized views and data
partitioning when combined together
reduces the query processing cost and
maintenance overhead.

Tadeusz
Morzy et al.
[21]

Handling dynamics in
content and structure in
traditional data
warehouse systems

 An approach is to use multi version data
warehouse where each data warehouse
version describes a schema and data at
certain period of time or given business
scenario.

 Multi version query language interface
having functionalities such as expressing
queries addressing several data warehouse
versions and presenting their results by
marking up with corresponding metadata
information. This is done as follows:

a. The query is decomposed into partial
queries which are independent each
for one data warehouse version
specified in original query.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

12

b. The partial query is executed in its
own data warehouse version and the
result of each partial query is
presented to the user along with
version and metadata information
which is used to analyse and interpret
the obtained results.

c. If possible these partial results are
integrated into common set of data.

Panos
Vassiliadis et
al. [22]

Multidimensional data
cubes

 Comparison of the various approaches
within relational-oriented, cube-oriented,
standards and statistical models was
performed and the results were tabulated.

Venky
Harinarayan
et al. [23]

Materializing some
cells of the cube.

 Investigated which cells are to be
materialized when it becomes too expensive
to materialize all cells.

 A lattice framework is used for expressing
the dependencies among views followed by
a greedy algorithm which works on this
lattice picking the views which are to be
materialized considering the constraints.

Fahad Sultan
et al. [4]

Storing queries and
their corresponding
results

 Cache memory is first examined to check
whether the query is already stored.

 Index is maintained to keep track of queries
and their results.

 In case of data warehouse updates, if the
same query is fired then the query does not
have to check all records. Rather it will
search for those records which satisfy the
criteria from onwards to that index.

 Non re-evaluation of queries which are
already stored in cache saves significant time
and enhances data warehouse performance.

 Table 1: Summary of Related Literature

III. CONCLUSION

Based on the above discussed literature, the
following conclusions have been derived:

a. View is a derived relation defined in
terms of base relations which can be
materialized by storing its extent in
database. Index structures may be
implemented on the materialized views
which make database access to tuples
faster rather than re-computing the view.
When there are changes in base relations
i.e. deletion, insertion and updates,
relevant change in view is possible [7].

b. Materialized views can improve query
processing time especially in case of
aggregate queries [17].

c. View maintenance is necessary as the
data sources are updated [13].

d. Views being complex, it is better and
cheaper to maintain them incrementally
by applying the changes made to the base
data rather than to re-compute the view
from the scratch [9].

e. Though materialized views speed up
query, to ensure correct results, they
should be kept up to date when accessed
by a query. They can be maintained
eagerly i.e. in the same transaction as the
base tables are updated and these updates
bear the cost of view maintenance
Overhead issues arise for maintaining
materialized views. This overhead
increases when multiple views are

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

13

maintained and hence results into poor
response time for updates. Instead of
forcing for updates, some database
systems support the deferred
maintenance approach, i.e. view
maintenance can be delayed till the user
explicitly triggers. This in turn can lead
to out-of-date view producing incorrect
results. Also, materialized views will no
longer be automatic and transparent and
query users need to have knowledge
about the views used by a query, their
maintenance and requirement of
updation [12].

f. High query performance i.e. low query
processing cost is in conflict with low
view maintenance cost. By storing in the
data warehouse the results of all the
queries of interest, high query
performance can be obtained. But the
maintenance cost of the materialized
queries might be high [16].

g. Multidimensional data cubes which are
the logical model for OLAP (Online
Analytical Processing) provide the
functionality needed for summarizing,
viewing and consolidating the
information available in data warehouse
[22].

h. In order to optimize query, we can
materialize some cells instead of
computing them from raw data every
time. In case of implementation of data
cube the available options are: 1)
materialize the whole data cube, which
will give best query response at the cost
of higher storage, 2) materialize nothing
resulting into computing every cell on
request, 3) materialize only a part of the
cube [23].

i. In case of materializing whole data cube,
for n dimensions, the number of
aggregates will be 2n for snowflake
schema [2].

REFERENCES

[1]. Kenneth C. Laudon, Jane P. Laudon,
Rajanish Dass, Management Information
Systems, pages 41- 46, Eleventh Edition,
Pearson.

[2]. G. K. Gupta, Introduction to Data Mining
with Case Studies, pages383-387, PHI
Learning Private Limited, 2014.

[3]. Jiawei Han, Micheline Kamber, Jian Pei,
Data Mining-Concepts and Techniques,
pages126- 129, Third Edition, Morgan
Kaufman Publishers.

[4]. Fahad Sultan, Abdul Aziz, “Ideal Strategy to
Improve Data warehouse Performance,”
International Journal on Computer Science
and Engineering Vol. 02, No. 02, 2010, 409-
415.

[5]. M. Bouzeghoub, F. Fabret, M. Matulovic-
Broqué, “Modeling Data Warehouse
Refreshment Process as a Workflow
Application,” Proceedings of the
International Workshop on Design and
Management of Data Warehouses
(DMDW'99) Heidelberg, Germany, 14. - 15.
6. 1999 (S. Gatziu, M. Jeusfeld, M. Staudt,
Y. Vassiliou, Eds.).

[6]. Ashish Gupta, Inderpal Singh Mumick,
“Maintenance of Materialized Views:
Problems, Techniques and Applications,”
Bulletin of the Technical Committee on Data
Engineering, June 1995, Vol. 18, No. 2,
IEEE Computer Society.

[7]. Ashish Gupta, Inderpal Singh Mumick,
V.S.Subrahmanian, “Maintaining Views
Incrementally,” Proceedings of the 1993
ACM SIGMOD International Conference on
Management of Data, Pages 157-166.

[8]. Randall G. Bello, Karl Dias, Alan
Downing, James Feenan, Jim Finnerty,
William D. Norcott, Harry Sun, Andrew
Witkowski, Mohamed Ziauddin.
“Materialized Views in Oracle”.
Proceedings of the 24th VLDB Conference,
New York, USA, 1998.

[9]. Dallan Quass, “Maintenance Expressions
for Views with Aggregation,” Views'96, June
1996, [Online]. Available:
http://ilpubs.stanford.edu:8090/183/1/1996-
54.pdf

[10]. Ashish Gupta, H.V. Jagadish, Inderpal S.
Mumick, “Data Integration using Self-
Maintainable Views,” Advances in Database
Technology — EDBT '96, Volume 1057 of
the series Lecture Notes in Computer
Science, pp 140-144.

[11]. Kenneth A Ross, Divesh Srivastava,
S.Sudarshan, “Materialized View
Maintenance and Integrity Constraint
Checking: Trading Space for Time,”
Proceedings of the 1996 ACM SIGMOD
International Conference on Management of
Data, Pages 447-458.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

14

[12]. Jingren Zhou, Per-Ake Larson, Hicham
G. Elmongui, “Lazy Maintenance of
Materialized Views,” VLDB '07 Proceedings
of the 33rd International Conference on Very
large Databases, Pages 231-242.

[13]. Yue Zhuge, Hector Garcia-Molina,
Joachim Hammer, Jennifer Widom, “View
Maintenance in a Warehousing
Environment,” Proceedings of the 1995
ACM SIGMOD International Conference on
Management of Data, Pages 316-327.

[14]. D. Agrawal, A. El Abbadi, A. Singh, T.
Yurek, “Efficient View Maintenance at Data
Warehouses,” SIGMOD ’97, AZ, USA @
1997 ACM 0-89791 -911 -419710005.

[15]. Surajit Chaudhuri, Ravi Krishnamurthy,
Spyros Potamianos, Kyuseok Shim,
“Optimizing Queries with Materialized
Views,” [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/downloa
d?doi=10.1.1.42.2680&rep=rep1&type=pdf

[16]. Dimitri Theodoratos, Timos Sellis, “Data
Warehouse Configuration, “Proceedings of
the 23rd VLDB Conference Athens, Greece,
1997.

[17]. Jonathan Goldstein, Per-Ake Larson,
“Optimizing Queries Using Materialized
Views: A Practical, Scalable Solution,”
Proceedings of the 2001 ACM SIGMOD
International Conference on Management of
Data, Pages 331-342, ISBN:1-58113-332-4.

[18]. Divesh Srivastava, Shaul Dar, H. V.
Jagadish, Alon Y.Levy, “Answering Queries
with Aggregation Using Views,”
Proceedings of the 22nd VLDB Conference,
Mumbai (Bombay), India, 1996.

[19]. Sirirut Vanichayobon. “Indexing
Techniques for Data Warehouses’ Queries”.
[Online] Available:

http://www.cs.ou.edu/~database/documents/
vg99.pdf , https://pdf,
https://pdfs.semanticscholar.org/00ce/fcf3c2
3b28b0b51f98ac2d3998ab43e904ca.pdf
[Accessed May 25, 2017].

[20]. Ladjel Bellatreche, Michel Schneider,
Herv´e Lorinquer, Mukesh Mohania,
“Bringing Together Partitioning,
Materialized Views and Indexes to Optimize
Performance of Relational Data
Warehouses,” Y. Kambayashi et al. (Eds.):
DaWaK 2004, LNCS 3181, pp. 15–25, 2004.
Springer-Verlag Berlin Heidelberg 2004.

[21]. Tadeusz Morzy, Robert Wrembel, “On
Querying Versions of Multiversion Data
Warehouse,” DOLAP’04, November 12–13,
2004, Washington, DC, USA. Copyright
2004 ACM 1-58113-977-2/04/001.

[22]. Panos Vassiliadis, Timos Sellis, “A
 Survey of Logical Models for OLAP
databases,” ACM SIGMOD Record, Volume
28 Issue 4, Dec.1999, Pages 64 – 69.

[23]. Venky Harinarayan, Anand Rajaraman,
Je
rey D. Ullman, “Implementing Data Cubes
Efficiently,” Proceedings of the 1996 ACM
SIGMOD International Conference on
Management of data, Pages 205-216.

[24]. Panos Vassiliadis, Alkis Simitsis,
“Extraction, Transformation, and Loading,”
Encyclopedia of Database Systems, pp 1095-
110.1

[25]. Adela Bara, Ion Lungu, Manole
Velicanu, Vlad Diaconita, Iuliana Botha,
“Improving query performance in
virtual data warehouses,” WSEAS
TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS, Issue 5,
Volume 5, 2008, ISSN: 1790-0832.

