
 

       ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017 
80 

 

 

 

 

 

CONVOLUTION NEURAL NETWORKS FOR FACE 
RECOGNITION AND FEATURE EXTRACTION

1Fareena, 2Divya Ravi. N 
Dept. of Information Science and Engineering, Alva’s Institute of Engineering and Technology 

 
Abstract 
A robust human identity authentication 
system is vital nowadays due to the increasing 
number of crime and losses through identity 
fraud. And thus, facial recognition for 
verification and validation has been one of the 
major evolutions through neural networks. 
However, it still remains one of the 
challenging problems. The main challenge is 
how to improve the recognition performance 
when affected by the variability of non-linear 
effects that include illumination variances, 
poses, facial expressions, occlusions, etc.  

In the paper, robust 4-layer 
Convolutional Neural Network (CNN) 
architecture is proposed for the face 
recognition problem, with a solution that is 
capable of handling facial images. 
 We will outline the most important existing 
approaches to facial image analysis and 
present novel methods based on 
Convolutional Neural Networks (CNN) to 
detect, normalize and recognize faces and 
facial features. CNN is inspired by visual 
mammalian cortex of simple and complex 
cells. It consists of 4- 8 layers with image 
processing tasks incorporated into the design. 
CNN applies three architectural concepts in 
its architecture namely shared weights, local 
receptive field and sub sampling. They show 
to be a powerful and flexible feature 
extraction and classification technique which 
has been successfully applied in other 
contexts, i.e. hand-written character 
recognition, and which is very appropriate for 
face analysis problems. 

INTRODUCTION 

 Face detection is a well studied problem in 
computer vision. Modern face detectors can 
easily detect near frontal faces. Recent research 
in this area focuses more on the uncontrolled face 
detection problem, where a number of factors 
such as pose changes, exaggerated expressions 
and extreme illuminations can lead to large 
visual variations in face appearance, and can 
severely degrade the robustness of the face 
detector. The difficulties in face detection mainly 
come from two aspects: 1) The large visual 
variations of human faces in the cluttered 
backgrounds 2) The large search space of 
possible face positions and face sizes. The 
former one requires the face detector to 
accurately address a binary classification 
problem while the latter one further imposes a 
time efficiency requirement. In the paper, we 
propose to apply the Convolutional Neural 
Network (CNN) for face detection. Compared 
with the previous hand-crafted features, CNN 
can automatically learn features to capture 
complex visual variations by leveraging a large 
amount of training data and its testing phase can 
be easily parallelized on GPU cores for 
acceleration. Convolutional nets can be used to 
classify images (name what they see), cluster 
them by similarity (photo search), and perform 
object recognition within scenes. They can 
identify faces, individuals, street signs, 
eggplants, platypuses and many other aspects of 
visual data.. 
 

I. PRINCIPLES OF CNN 
Convolution is the integral measuring how much 
two functions overlap as one passes over the 
other. Think of a convolution as a way of mixing 



 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

       ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017 
81 

two functions by multiplying them. With image 
analysis, the static, underlying function (the 
equivalent of the immobile bell curve) is the 
input image being analyzed, and the second, 
mobile function is known as the filter, because it 
picks up a signal or feature in the image. The two 
functions relate through multiplication. The next 
thing to understand about convolutional nets is 
that they are passing many filters over a single 
image, each one picking up a different signal. At 
a fairly early layer, you could imagine them as 
passing a horizontal line filter, a vertical line 
filter, and a diagonal line filter to create a map of 
the edges in the image. Convolutional networks 
take those filters, slices of the image’s feature 
space, and map them one by one; that is, they 
create a map of each place that feature occurs. By 
learning different portions of a feature space, 
convolutional nets allow for easily scalable and 
robust feature engineering. (Note that 
convolutional nets analyze images differently 
than RBMs. While RBMs learn to reconstruct 
and identify the features of each image as a 
whole, convolutional nets learn images in pieces 
that we call feature maps.) So convolutional 
networks perform a sort of search. Picture a 
small magnifying glass sliding left to right across 
a larger image, and recommencing at the left 
once it reaches the end of one pass (like 
typewriters do). That moving window is capable 
recognizing only one thing, say, a short vertical 
line. Three dark pixels stacked atop one another. 
It moves that vertical-line-recognizing filter over 
the actual pixels of the image, looking for 
matches.  

Each time a match is found, it is mapped onto 
a feature space particular to that visual element. 
In that space, the location of each vertical line 
match is recorded, a bit like birdwatchers leave 
pins in a map to mark where they last saw a great 
blue heron. A convolutional net runs many, many 
searches over a single image – horizontal lines, 
diagonal ones, as many as there are visual 
elements to be sought   
 

II. METHODOLOGY 
CNN algorithm has two main processes: 
convolution and sampling . Convolution process: 
Uses a trainable filter Fx, deconvolution of the 
input image (the first stage is the input image, the 
input of the after convolution is the feature image 
of each layer, namely Feature Map), then add a 
bias bx, we can get convolution layer Cx. A 
sampling process: n pixels of each neighborhood 

through pooling steps, become a pixel, and then 
by scalar weighting Wx + 1 weighted, add bias 
bx + 1, and then by an activation function, 
produce a narrow n times feature map Sx + 1.  
     

. 
 

III. WORKING 
Convolutional networks perceive images as 
volumes; i.e. three-dimensional objects, rather 
than flat canvases to be measured only by width 
and height. That’s because digital color images 
have a red-blue-green (RGB) encoding, mixing 
those three colors to produce the color spectrum 
humans perceive. A convolutional network 
ingests such images as three separate strata of 
color stacked one on top of the other. So a 
convolutional network receives a normal color 
image as a rectangular box whose width and 
height are measured by the number of pixels 
along those dimensions, and whose depth is three 
layers deep, one for each letter in RGB. Those 
depth layers are referred to as channels. As 
images move through a convolutional network, 
we will describe them in terms of input and 
output volumes, expressing them mathematically 
as matrices of multiple dimensions in this form: 
30x30x3. From layer to layer, their dimensions 
change for reasons that will be explained below. 
Pay close attention to the precise measures of 
each dimension of the image volume, because 
they are the foundation of the linear algebra 
operations used to process images. 
 Now, for each pixel of an image, the 
intensity of R, G and B will be expressed by a 
number, and that number will be an element in 
one of the three, stacked two-dimensional 
matrices, which together form the image volume. 
Those numbers are the initial, raw, sensory 
features being fed into the convolutional 
network, and the ConvNets purpose is to find 
which of those numbers are significant signals 
that actually help it classify images more 
accurately. (Just like other feedforward networks 
we have discussed.) Rather than focus on one 
pixel at a time, a convolutional net takes in 
square patches of pixels and passes them through 
a filter. That filter is also a square matrix smaller 



 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

       ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017 
82 

than the image itself, and equal in size to the 
patch. It is also called a kernel, which will ring a 
bell for those familiar with support-vector 
machines, and the job of the filter is to find 
patterns in the pixels. 

 
Imagine two matrices. One is 30x30, and another 
is 3x3. That is, the filter covers one-tenth of one 
image channel’s surface area. We are going to 
take the dot product of the filter with this patch 
of the image channel. If the two matrices have 
high values in the same positions, the dot 
product’s output will be high. If they don’t, it 
will be low. In this way, a single value – the 
output of the dot product – can tell us whether 
the pixel pattern in the underlying image matches 
the pixel pattern expressed by our filter.  
Let’s imagine that our filter expresses a 
horizontal line, with high values along its second 
row and low values in the first and third rows. 
Now picture that we start in the upper left hand 
corner of the underlying image, and we move the 
filter across the image step by step until it reaches 
the upper right-hand corner. The size of the step 
is known as stride. At each step, take another dot 
product, and you place the results of that dot 
product in a third matrix known as an activation 
map. The width, or number of columns, of the 
activation map is equal to the number of steps the 
filter takes to traverse the underlying image. 
Since larger strides lead to fewer steps, a big 
stride will produce a smaller activation map. This 
is important, because the size of the matrices that 
convolutional networks process and produce at 
each layer is directly proportional to how 
computationally expensive they are and how 
much time they take to train.  

 
A larger stride means less time and compute. A 
filter superimposed on the first three rows will 
slide across them and then begin again with rows 
4-6 of the same image. Because images have 
lines going in many directions, and contain many 
different kinds of shapes and pixel patterns, you 
will want to slide other filters across the 
underlying image in search of those patterns. For 
example, look for 96 different patterns in the 
pixels. Those 96 patterns will create a stack of 96 
activation maps, resulting in a new volume that 
is 10x10x96. In the diagram below, we’ve 
relabeled the input image, the kernels and the 
output activation maps to make sure we’re clear. 

IV. CNN ARCHITECTURE 
     CNNs are comprised of three types of layers. 
These are convolutional layers, pooling layers 
and fully-connected layers. When these layers 
are stacked, a CNN architecture has been 
formed. A simplified CNN architecture for 
MNIST classification is illustrated in following 
figure. 
 

 
The basic functionality of the example CNN 
above can be broken down into four key areas. 1. 
As found in other forms of ANN, the input layer 
will hold the pixel values of the image. 2. The 
convolutional layer will determine the output of 
neurons of which are connected to local regions 
of the input through the calculation of the scalar 



 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

       ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017 
83 

product between their weights and the region 
connected to the input volume. The rectified 
linear unit (commonly shortened to ReLu) aims 
to apply an ’elementwise’ activation function 
such as sigmoid to the output of the activation 
produced by the previous layer. 3. The pooling 
layer will then simply perform downsampling 
along the spatial dimensionality of the given 
input, further reducing the number of parameters 
within that activation. 4. The fully-connected 
layers will then perform the same duties found in 
standard ANNs and attempt to produce class 
scores from the activations, to be used for 
classification. It is also suggested that ReLu may 
be used between these layers, as to improve 
performance.  
Through this simple method of transformation, 
CNNs are able to transform the original input 
layer by layer using convolutional and 
downsampling tech-niques to produce class 
scores. 

 
Fig: Real convolution image 

The creation and optimization of these models 
can take quite some time, and can be quite 
confusing. We will now explore in detail the 
individual layers, detailing their 
hyperparameters and connectivities. 
 
A. Convolution layer 
The convolutional layer plays a vital role in how 
CNNs operate. The layers parameters focus 
around the use of learnable kernels. These 
kernels are usually small in spatial 
dimensionality, but spreads along the entirety of 
the depth of the input. When the data hits a 
convolutional layer, the layer convolves each 
filter across the spatial dimensionality of the 
input to produce a 2D activation map. As we 
glide through the input, the scalar product is 
calculated for each value in that kernel. (Figure 
4) From this the network will learn kernels 
that ’fire’ when they see a specific feature at a 
given spatial position of the input. These are 
commonly known as activations. 

 
The centre element of the kernel is placed over 
the input vector, of which is then calculated and 
replaced with a weighted sum of itself and any 
nearby pixels. Every kernel will have a 
corresponding activation map, of which will be 
stacked along the depth dimension to form the 
full output volume from the convolutional layer. 
 

 
To calculate this, you can make use of the 
following formula: (V − R) + 2Z S + 1 Where V 
represents the input volume size (height× 
width×depth), R represents the receptive field 
size, Z is the amount of zero padding set and S 
referring to the stride. 
B. Pooling layer 
Pooling layers aim to gradually reduce the 
dimensionality of the representation, and thus 
further reduce the number of parameters and the 
computational complexity of the model.  
The pooling layer operates over each activation 
map in the input, and scales its dimensionality 
using the “MAX” function. In most CNNs, these 
come in the form of max-pooling layers with 
kernels of a 
dimensionality of 2 × 2 applied with a stride of 2 
along the spatial dimensions of the input. This 
scales the activation map down to 25% of the 
original size - whilst maintaining the depth 
volume to its standard size. Due to the 
destructive nature of the pooling layer, there are 
only two generally observed methods of max-
pooling. Usually, the stride and filters of the 
pooling layers are both set to 2 × 2, which will 
allow the layer to extend through the entirety of 
the spatial dimensionality of the input. 
Furthermore overlapping pooling may be 



 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

       ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017 
84 

utilized, where the stride is set to 2 with a kernel 
size set to 3. Due to the destructive nature of 
pooling, having a kernel size above 3 will usually 
greatly decrease the performance of the model. It 
is also important to understand that beyond max-
pooling, CNN architectures may contain general-
pooling. General pooling layers are comprised of 
pooling neurons that are able to perform a 
multitude of common operations including 
L1/L2-normalisation, and average pooling. 
 

V. COMPUTATION 
The convolution operation is defined as a 
multiplication operation between a filter vector u 
∈ Rmd and a concatenation vector representation 
xi:i+m−1 given by: xi:i+m−1 = xi ⊕ xi+1 
⊕ · · · ⊕ xi+m−1 (1) where xi:i+m−1 represents 
a window of m continuous time steps starting 
from the i-th time step. In addition, a bias term b 
is also added into the convolution operation, so 
that the final operation is given as: ci = g(u T 
xi:i+m−1 + b) (2) where ∗ T denotes the 
transpose of a matrix ∗ and g is a non-linear 
activation function that is set to Rectified Linear 
Units(ReLu)in our model [43]. Each vector u can 
be regarded as a filter, and the single value ci can 
be regarded as the activation of the window. 
Max-pooling: The convolution operation over 
the whole sequence is applied by sliding the 
filtering window from the beginning time step to 
the ending time step. It is easily shown that a 
feature map is a vector denoted as follows: cj = 
[c1, c2, . . . , cl−m+1 ] (3) where the index j 
denotes the j-th filter. It corresponds to multi-
windows as {x1:m, x2:m+1, . . . , xl−m+1:l}. The 
pooling layer is able to reduce the length of the 
feature map, which can further minimize the 
number of model parameters. The hyper-
parameter of pooling layer is the pooling length 
denoted as s. The max operation is taking a max 
over the s consecutive values in feature map cj . 
Then, the compressed feature vector can be 
obtained as: h = h h1, h2, . . . , h l−m s +1 i (4) 
where hj = max(c(j−1)s , c(j−1)s+1 , . . . , cjs−1). 
Generally, multiple filters are applied with 
different initialized weights to derive the output 
of the CNN layer. Generally, the size of the input 
sequence in the CNN layer is n × l × d, and n is 
the number of data samples. The size of the 
corresponding outputs is n × ( l−m s + 1) × k. It 
is easily shown that after the convolutional and 
pooling operation, the length of sequence data 
can be compressed from l to ( l−m s + 1). 
Compared to the original representation is raw 

sensory data with a dimensionality of d that is 
usually the number of sensors in each time step; 
more abstract and informative representation can 
be learned after CNN, and the corresponding 
dimensionality is k, which is the number of 
filters. The cost on training data is as follows 

 

 
Fig:Dimensions for the convolutional network. 
The connection percentage refers to the 
percentage of nodes in the previous layer which 
each node in the current layer is connected to – a 
value less than 100% reduces the total number of 
weights in the network and may improve 
generalization. The connection strategy used 
here is similar to that used by Le Cun et al. [24] 
for character recognition. 
The visualization of the feature activations 
across the convolutional layers allows evaluating 
the effect of filter size as well as filtering 
placement. For example, by analyzing the feature 
activations of the first and second layer, the 
authors observed that the first layer does only 
capture high frequency and low frequency 
information and the feature activations of the 
second layer show aliasing artifacts. By adapting 
the filter size of the first layer and the skipping 
factor used within the second layer, performance 
could be improved. In addition, the visualization 
shows the advantage of deep architectures as 
higher layers are able to learn more complex 
features invariant to low-level distortions and 
translations .  



 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

       ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017 
85 

 
Figure shows a selection of features across 
several layers of a fully trained convolutional 
network using the visualization technique 
 

CONCLUSION 
In the course of the paper we discussed the basic 
notions of both neural networks in general and 
the multilayer perceptron in particular. We 
introduced convolutional neural networks by 
discussing the different types of layers used in 
recent implementations: the convolutional layer; 
the non-linearity layer; the rectification layer; the 
local contrast normalization layer; and the 
pooling and subsampling layer. Based on these 
basic building blocks, we discussed the 
traditional convolutional neural networks. 
Nevertheless, convolutional neural networks and 
deep learning in general is an active area of 
research. Although the difficulty of deep 
learning seems to be understood learning feature 
hierarchies is considered very hard. Here, the 
possibility of unsupervised pre-training had a 
huge impact and allows to train deep 
architectures in reasonable time. Nonetheless, 
the reason for the good performance of deep 
neural networks is still not answered fully 
channel through virtualization techniques.  

 
REFERENCES 

1. Behnke, 2003] Sven Behnke. Hierarchical 
Neural Network for Image Interpretation, 

volume 2766 of Lecture Notes in Computer 
Science. Springer, 2003.  
2. [Boureau et al., 2010] Y-Lan Boureau, Jean 
Ponce, and Yann LeCun. A Theoretical Analysis 
of Feature Pooling inVisual Recognition. In 
International Conference on Machine Learning, 
2010.  
3. [Chellapilla et al., 2006] Kumar Chellapilla, 
Sidd Puri, and Patrice Simard. High performance 
convolutional neural networks for document 
processing. In International Workshop on 
Frontiers in Handwriting Recognition, 2006  
4. [Ciresan et al., 2010] Dan C. Ciresan, Ueli 
Meier, Luca M.  
5. Gambardella, and J¨urgen Schmidhuber. Deep 
big simple neural nets for handwritten digit 
recognition. Neural Computation,22(12):3207–
3220, 2010.  
6. [Coates et al., 2010] Adam Coates, Honglak 
Lee, and Andrew Ng. An analysis of single-layer 
networks in unsupervised feature learning. In 
Advances in Neural Information Processing 
Systems, 2010.  
7. [Fukushima, 1980] Kunihiko Fukushima. 
Neocognitron: A self-organizing neural network 
for a mechanism of pattern recognition 
unaffected by shift in position. Biological 
Cybernetics,  
8. 36(4):193–202, 1980 [Fukushima, 2003] 
Kunihiko Fukushima. Neocognitron for 
handwritten digit recognition. Neurocomputing, 
51:161 180, 2003.  
9. [Hoyer and Hyv¨arinen, 2000] Patrik O. Hoyer 
and Aapo Hyv¨arinen. Independent component 
analysis applied to feature extraction from colour 
and stero images. Network: Computation in 
Neural Systems, 11(3):191–210, 2000.  
10. [Jarrett et al., 2009] Kevin Jarrett, Koray 
Kavukcuoglu, Marc’Aurelio Ranzato, and Yann 
LeCun. What is the best multi-stage architecture 
for object recognition? In Proc.International 
Conference on Computer Vision, 2009. 

 
 


