# DIVISION OF MATRICES AND SYSTEM OF DIOPHANTINE EQUATIONS 

Shreemathi Adiga<br>M.Sc, M Phil, Assistant Professor of Mathematics<br>Govt First Grade College, Kundapura, Udupi District., Karnataka, India


#### Abstract

This paper deals with the division of non-zero, non-square matrices. Introduction Every under-graduate student of Mathematics is familiar with the creation of a mathematical model known as matrices and its various operations. Normally, in the textbooks of Algebra, the division of two non-zero, nonsingular matrices is considered. In other words, if A and B are two non-zero, non-singular square matrices of order n then the division $\frac{A}{B}$ is


 considered as follows: $\frac{A}{B}=A \cdot \frac{1}{B}=A \cdot B^{-1}$ where $B^{-1}$ represents the inverse of $B$. This result motivated us to search for the division of two non-zero, non-square matrices. For simplicity and clear understanding, we illustrate below the division of two non-zero, non-square matrices by employing the solutions of system of double Diophantine equations.Illustration: 1

$$
\begin{align*}
& \text { Let } A=\left(\begin{array}{lll}
2 & 3 & 1 \\
5 & 1 & 4
\end{array}\right), \quad C=\left(\begin{array}{ll}
14 & 17 \\
25 & 21
\end{array}\right) \\
& \text { Assume } \frac{C}{A}=B \tag{1}
\end{align*}
$$

Since, C is a matrix of order 2 x 2 and A is a matrix of type of order $2 \times 3$, observe that $B$ should be a matrix of order $3 \times 2$.
Consider $\left(\begin{array}{ll}x & X \\ y & Y \\ z & Z\end{array}\right)$
(3) is equivalent to the following equations
$2 x+3 y+z=14$
$5 x+y+4 z=25$
$2 X+3 Y+Z=14$
$5 X+Y+4 Z=21$
Considering (4) and (5), as a system of double Linear Diophantine equations and performing a few calculations, we can get the solution for $\mathrm{x}, \mathrm{y}$, and z . From (4) and (5)
$2 \mathrm{x}+3 \mathrm{y}=14-\mathrm{z}$
$5 x+y=25-4 z$
$8 x+12 y=56-4 z$
$5 x+y=25-4 z$
$3 x+11 y=31$
(8)is a diophantine equation, $\operatorname{gcd}(3,11)=1$ and $1 / 31$. So it has a solution.
Now consider,
$3 x+11 y=31$---------- 8
By inspection,
$X_{0}=14_{1} y_{0}=-1$ is a solution.
The other solutions are given by
$\mathrm{x}=\mathrm{x} 0-(\mathrm{b} / \mathrm{d}) \mathrm{t}$
$\mathrm{y}=\mathrm{y}_{0}+(\mathrm{a} / \mathrm{d}) \mathrm{t}$, , $\mathrm{t} \in \mathrm{I}$ where $\mathrm{a}=3$; $\mathrm{b}=11$
$\therefore \mathrm{x}=14-11 \mathrm{t}$
$Y=-1+3 t, t \in I$

## To find z

Now,(4 )-(5) gives
$-3 x+2 y-3 z=-1$
$3 z=-3 x+2 y+11$
$3 z=-3(14-11 t)+2(-1+3 t)+11$
$\therefore z=13 \mathrm{t}-11$
$\therefore$ Equations (4) and (5 )are satisfied by
$\therefore \mathrm{x}=14-11 \mathrm{t}$
Now, (1) is written as $C=A B$

$$
\begin{align*}
& y=-1+3 t  \tag{9}\\
& z=-11+13 t\} t \in I
\end{align*}
$$

Now from( 6) $2 \mathrm{X}+3 \mathrm{Y}=17-\mathrm{Z}$
From (7,) 5X $+\mathrm{Y}=21-4 \mathrm{Z}$
$8 \mathrm{X}+12 \mathrm{Y}=68-4 \mathrm{Z}$----------( 10 )
$5 \mathrm{X}+\mathrm{Y}=21-4 \mathrm{Z}$
-(11)
(9)-(10) gives
$3 \mathrm{X}+11 \mathrm{Y}=47$---------(12) This is a diophantine equation and $\operatorname{gcd}(3,11)=1$ and $1 / 47$. So it has a solution
By inspection, $\mathrm{X}_{0}=23 \mathrm{y}_{0}=-2$ is a solution
The other solutions are given by
$X=x 0-(b / d) T$ where $a=3 ; b=11, T \in I$
$\mathrm{Y}=\mathrm{y}_{0}+(\mathrm{a} / \mathrm{d}) \mathrm{T}$
$\therefore \mathrm{X}=23-11 \mathrm{~T}$
$\therefore \mathrm{Y}=-2+3 \mathrm{~T} \mathrm{~T} \in \mathrm{I}$

## To find Z

(7)-(6) gives,
$3 \mathrm{X}-2 \mathrm{Y}+3 \mathrm{Z}=4$
$\therefore 3 \mathrm{Z}=4-3 \mathrm{X}+2 \mathrm{Y}$

$$
3 Z=4-3(23-11 T)+2(-2+3 T)
$$

$$
\mathrm{Z}=-23+13 \mathrm{~T}, \mathrm{~T} \in \mathrm{I}
$$

So we have the solution for the elements of $B$ as follows
$\left.\begin{array}{l}x=14-11 t \\ y=3 t-1 \\ z=13 t-11 \\ X=23-11 T \\ Y=3 T-2 \\ Z=13 T-23\end{array}\right\}$
Substituting (13) and (14) in (2), note that

$$
B=\left(\begin{array}{ll}
14-11 t & 23-11 T \\
3 t-1 & 3 T-2 \\
13 t-11 & 13 T-23
\end{array}\right)
$$

Which is the required division of $\frac{C}{A}$


Since C/A=B
We Show that $\mathrm{C}=\mathrm{AB}$

$$
\begin{aligned}
& \text { Consider } \mathrm{AB}=\left[\begin{array}{lll}
2 & 3 & 1 \\
5 & 1 & 4
\end{array}\right]\left[\begin{array}{rc}
+3 & 12 \\
2 & 1 \\
2 & -10
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6+6+2 & 24+3 & -10 \\
15+2+8 & 60+1 & -40
\end{array}\right]
\end{aligned}
$$

$\left[\begin{array}{ll}14 & 17 \\ 25 & 21\end{array}\right]=C$
$\left[\begin{array}{ll}25 & 21\end{array}\right]$
$\frac{\operatorname{Eg} 2}{A}=\left[\begin{array}{ccc}2 & 3 & 1 \\ 5 & 4 & 1\end{array}\right]$
$C=\left[\begin{array}{cc}14 & 17 \\ 25 & 21\end{array}\right]$

For $\mathrm{T}=-1, \mathrm{~T}=2$,

$$
\mathrm{B}=\left(\begin{array}{cc}
25 & 1 \\
-4 & 4 \\
-24, & 3
\end{array}\right)
$$

$$
\mathrm{AB}=\left[\begin{array}{cc}
14 & 17 \\
25 & 21
\end{array}\right]=\mathrm{C}
$$

## Eg 3

For $\mathrm{t}=3, \mathrm{~T}=-1$
$B=\left[\begin{array}{cl}-19 & 34 \\ 8 & -5 \\ 28 & -36\end{array}\right]$
$\mathrm{AB}=\left[\begin{array}{lll}2 & 3 & 1 \\ 5 & 1 & 4\end{array}\right]\left[\begin{array}{cc}-19 & 34 \\ 8 & -5 \\ 28 & -36\end{array}\right]=\left[\begin{array}{ll}-38+24+28 & 68-15-36 \\ -95+8+112 & 170-5-144\end{array}\right]$

$=\left[\begin{array}{cc}14 & 17 \\ 25 & 21\end{array}\right]$
So C/A has infinitely many solutions.

## Illustration 2

Let $A=\left(\begin{array}{lll}2 & 3 & 1 \\ 5 & 1 & 4\end{array}\right), \quad C=\binom{2}{3}$

$$
\begin{equation*}
\text { Assume } \frac{C}{A}=B \tag{1}
\end{equation*}
$$

Since, C is a matrix of order 2 x 1 and A is a matrix of order $2 \times 3$, observe that $B$ should be a matrix of order $3 x 1$.
Consider $\mathrm{B}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
Now, (1) is written as $C=A B$

$$
\text { ie., }\left(\begin{array}{lll}
2 & 3 & 1  \tag{3}\\
5 & 1 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{2}{3}
$$

(3) is equivalent to the following equations

$$
2 x+3 y+z=2
$$

$5 x+y+4 z=3$
Or $\quad 8 x+12 y+4 z=8$

$$
5 x+y+4 z=3
$$

Subtracting, $3 x+11 y=5$, Which is a Diophantine Equation with gcd $(3,11)=1$
And 1 divides 5 .So it has a solution. By inspection, $x_{0}=-2, y_{0}=1$ is a particular solution The other solutions are given by,
$\mathrm{x}=\mathrm{x} 0-(\mathrm{b} / \mathrm{d}) \mathrm{t}$
$y=y_{0}+(a / d) t$, , $t \in I$ where $a=3 ; b=11$
$\therefore \mathrm{x}=-2-11 \mathrm{t}$
$Y=1+3 t \mathrm{t} \in \mathrm{I}$
To find Z

## (2)-(1) gives

$3 x-2 y+3 z=1$,
$3 z=1-3 x+2 y=1-3(-2-11 t)+2(1+3 t)$
$\underline{Z=3+13 t} t \in I$

So the solution of (2) is given by
$B=\left(\begin{array}{l}-2-11 t \\ 1+3 t \\ 3+13 t\end{array}\right) t \in I$
Eg.1. For $t=1, x=-13, y=4, z=16$
$B=\left(\begin{array}{l}-13 \\ 4 \\ 16\end{array}\right)$
and $B$ satisfy $C=A B$ or $C / A=B$
Eg 2. For $\mathrm{t}=-1, \mathrm{x}=9, \mathrm{y}=-2, \mathrm{z}=-10$

$$
\mathrm{B}=\left(\begin{array}{l}
9 \\
-2 \\
-10
\end{array}\right) \text { Also it satisfy } \mathrm{C}=\mathrm{AB} \text { or } \mathrm{C} / \mathrm{A}=\mathrm{B}
$$

where

$$
A=\left(\begin{array}{lll}
2 & 3 & 1 \\
5 & 1 & 4
\end{array}\right), \quad C=\binom{2}{3}
$$

## Conclusion:

In this paper, we have presented the division of two matrices in which one is a non-singular square matrix and the other one is a rectangular matrix. In conclusion, it is observed that one may find division of two non-zero, non-square matrices leading to infinitely many solutions for the division.

## References

1.Elementary number theory by David M Burton 2.Diophontine Equations from Wolfram MathWorld..

