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Abstract 
In 1988, Felten obtained local and global 
approximation theorems for positive linear 
operators. In the last decade, Finta studied 
direct local and global approximation 
theorems for Baskakov type operators and 
Szasz-Mirakian type operators. In the 
present paper, we establish some local 
approximation estimates for a new family of 
beta operators, by using Ditzian-Totik 
modulus of smoothness. 
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I. Introduction 
In 1985, Upreti[10] studied approximation 
properties of beta operators[4, 5, 8]. Zhou [12] 
obtained direct and inverse theorems for these 
operators. Gupta and Dogru [6] obtained some 
direct results for beta operators. Recently, 
Kumar [9] studied direct results for Beta-Szasz 
operators in simultaneous approximation. 
Motivated by the work on beta operators, Gupta 
et al. [7] introduced a new family of beta 
operators to approximate lebesgue integrable 
functions on ),0[  as 

 

   





0

,
1

, )()()(
)1(

1
),( dttftbxb

n
xfB vn

v
vnn ,       ),0[ x                  (1.1) 

 

where  )numbersnaturalofsetthe(Nn ,     11
, )1(

)1,(

1
)(  


 vnv

vn tt
nv

tb


and  

 
)!/(!)!1()1,( vnnvnv   the beta function. 
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where Nn  and ),0[ x . 
 It can be easily verified that the operators (1.1) are linear positive operators and the order of 
approximation by these operators is at best O(n-1) as n , howsoever smooth the function may 
be. 
 Let ),0[£r

1   be the class of functions g defined by  
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where the constants M and m depend on g, and  pba 0],,[Lp  stands for the pL -space. 

 It is obvious that ),0[r
p L is not contained in ),0[£r

1  . 

 Due to Ditzian and Totik[1], the modulus of smoothness of a function f is defined by 
  

      
ph

th

ftf 2

0

2 sup),(  


           (1.9) 

where   )1()(2 xxx     and  
 



 


otherwise                      0

),0[],[if)()(2)(
)(2 hxhxhxfxfhxf

xfh  

 

 Let    ),0[and),0[:),0[),0[, 22
 plocpp LACLW ggg  . 

 Following [14], it can be easily verified that the modulus of smoothness [1] defined by (1.9) 
, is equivalent to the modified K-functional given by 
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  The main object of the present paper is to establish some local approximation estimates [2, 
3] for the operators (1.1) in terms of Ditzian-Totik modulus of second order. 
 

II. Preliminary Results 
This section consists of some auxiliary results, which will be helpful in proving the main 

results of next section. 
Lemma 2.1. For 0N, rm (the set of non-negative integers), let the function )(,,r xT mn be 

defined as  
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and for all rmn  , there holds the recurrence relation  
 

)()21)(1()](2)()[1()()( ,,r1,,r,,r1,,r xTxrmxmTxTxxxTrmn mnmnmnmn   . 

 
 Consequently, for each ),0[ x , we have  

 ]2/)1[(
,,r )(  m
mn nOxT , 

where ][  denotes the integral part of  . 
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 Proof. Using the definition of )(,,r xT mn and basic properties of )(, xb vn , we obtain 
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Therefore, using (1.8) we get  
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Thus, collecting the like terms, we get the desired recurrence relation 
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 The other consequence easily follows from the above recurrence relation. 
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Lemma 2.2. For )1(,1),,0[£)[0, r
1

r  mrnpLf p and ),0[ x , we have 
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Proof. By Leibnitz theorem, with the notation
dx

d
D  , we have 
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Again by Leibnitz theorem, we have 
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 Thus, from (2.2) and (2.3), we get 
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Further integrating by parts r times, taking f (t) as first function, we get the required result 
(2.1).  

Here, it is important to note that the operators defined in (2.1) by   
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are not positive. To make these operators positive, we introduce the operators  
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 where D and I stand for differentiation and integration operators respectively. 
Thus, for all ),0[£)[0, 1  pLf and n>r(1+m), the operators (2.1) can now be identified as 
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III. Local Approximation Results 
 In this section, we establish direct local approximation theorems for the operators (1.1). Let 
)[0,BC be the space of all real valued continuous and bounded functions f on )[0, equipped 

with the norm )(sup
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 Now we start to study the main results of this section, one of which stated as  
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 Finally, taking the infimum on the right hand side of (3.9), over all 2
Wg  and applying 

(3.1), we get the desired result (3.2).       
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 Applying Cauchy-Schwarz inequality for integration and then summation, we obtain 
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Hence, collecting the estimates of (3.11), (3.12) and (3.13), we get  
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 Finally, choosing 2/1)(  rn , we get the required result (4.10). 
 This completes the proof of the Theorem 3.2. 
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