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Abstract 
Optical coherence tomography (OCT) is an 
established medical imaging technique that 
uses light to capture micrometer–resolution, 
images. The images from OCT can be used in 
the investigation of various Macular 
Disorders. The thicknesses of the macular 
layers are affected during multiple eye 
disorders. The accurate quantification of the 
macular layers and lesions provides clinically 
relevant information about macula. But the 
extraction and study of the OCT images 
manually is the time consuming and prone to 
human errors. The currently existing 
approaches focus on extracting data about a 
specific lesion in the diseased macula or on 
segmenting the macular layers in the healthy 
macula, thereby avoiding much valuable 
clinical information. The new automatic 
method is an approach to jointly segment 
macular layers and lesion in eyes with 
topology disrupting macular disorders. This 
method is capable of handling local intensity 
variation and the presence or absence of 
pathological structure in the macula. Thus it 
provides a flexible and accurate method to 
study the OCT images.  
Index Terms: Optical Coherence 
Tomography, Macular Edema, Age related 
macular degeneration, Ganglion cell complex, 
Outer nuclear layer, Central serous 
retinopathy.  
  

I. INTRODUCTION  

Optical coherence tomography (OCT) is a 
noninvasive, and latest eye examination 

technique that can be used to acquire in-vivo 
images of macular structures. Its high resolution 
enables the investigation of the macular tissue 
layers and pathological changes [1]. In various 
eye disorders, the thickness of one or more 
macular layers is affected. For example, ganglion 
cell complex (GCC) gets thinner in patients with 
age-related macular degeneration (AMD). 
Furthermore, changes in the properties of a tissue 
that composes a layer occur [2]. For example, in 
patients with glaucoma, the OCT signal and OCT 
derived attenuation coefficient values of the 
RNFL were shown to be reduced when compared 
to healthy subjects, whereas in patients with 
central serous retinopathy (CSR), changes in 
reflectivity of the outer nuclear layer (ONL) were 
encountered. Finally, certain pathologies may 
give rise to additional structures that are not 
present in the macula of healthy subjects. In dry 
AMD, small deposits of extracellular tissue, 
called drusen, form within the retina. In CSR, the 
build-up of fluids in the macula space creates a 
fluid pocket that disrupts the outer macular 
layers. In diabetic macular edema (DME), cysts 
may form inside inner and outer macula layers. 
Accurate quantification of macula structures, 
both layers and lesions, provides clinically 
relevant information about the macula. 
Extraction of these imaging biomarkers has 
become an important task as it enables valuable 
input for diagnostics, prognostics, and 
monitoring of macular disorders [1]. When done 
manually, this is a potentially subjective and 
time-consuming job and large data volumes. 
Hence, an objective and automated tool that 
extracts clinically useful information, such as the 
thickness of layers and the presence and extent of 
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emerging pathologies, is needed. This need for 
segmentation of macular layers and lesions has 
been recognized before [1]. However, most 
existing approaches focus either on extracting 
information about a specific lesion in the 
diseased macula or on segmenting the macular 
layers in healthy macula and macular disorders 
such as macular edema (ME), AMD, CSR etc. By 
segmenting only macula lesions without macular 
layer segmentation, other potentially valuable 
clinical information about the macula is ignored. 
Automatic segmentation of the both macular 
layers and lesions that may exist in pathological 
macula, such as sub retinal fluid, drusen and 
cysts, remains a challenging task as the presence 
of lesions can cause large disruptions of the 
macula. First, the topology and morphology of 
the macula may be affected. Second, the lesions 
vary largely in size, shape and location. Third, the 
OCT intensity of one or more layers may vary 
considerably within a scan. A few approaches 
have been presented to segment both the macular 
layers and lesions but only three of these 
approaches have the accuracy of both layer and 
lesion segmentation evaluated.   

  
Fig.1: OCT  

 
II. METHODOLOGY  

The segmentation framework performs the joint 
segmentation of interfaces between macular 
layers and lesions. It operates on attenuation 
coefficients, which are derived from in-vivo 
human macular OCT images. The framework 
consists of several processing steps including 
conversion to attenuation coefficients, feature 
detection, noise suppression as well as the actual 
joint layer and lesion segmentation method. First, 
briefly introduce the conversion to attenuation 
coefficients and the LCLS framework. Then, 
generalizations to the framework to deal with 
segmentation challenges present in the eyes of 
CSR and AMD patients such as the local 
variation in estimated attenuation coefficients 

within layers and the presence of space-variant 
lesions.   

  

  
Fig.2: Block Diagram  

  
A. Attenuation coefficient  

The intensities of the raw OCT data 
were compensated for noise and depth-
dependent decay after which the OCT data was 
transformed into attenuation coefficients. The 
attenuation coefficient is an optical property of 
a tissue and as such illumination invariant. 
Therefore, various arte facts that are common in 
OCT images, such as intensity fluctuation 
within layers, are largely reduced. In short, the 
calculation of the attenuation coefficients is 
performed based on the ratio of intensity at a 
certain depth and summation of intensities 
beyond that depth. The intensity value at a 
certain depth represents the back-scattered light 
at that depth, whereas the summation represents 
the amount of light that is back-scattered at 
depths beyond the current one. The ratio of the 
two can be understood as the fraction of the 
incident light that is back-scattered.   
  
B. Loosely coupled level sets (LCLS)  

The LCLS framework employs a 
probabilistic approach, which incorporates 
image data and prior knowledge of the macula 
to segment the interfaces between macular 
layers. Every Interface Ci is represented by its 
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own level set function ɸi, which is propagated 
according to the equation 1  

=-Δt((Pr(li|µ)-0.5)+αki+ßζi)|ΔΦi|                                     (1)       
Where Pr(li|µ) is the probability of a pixel 
belonging to layer li given the attenuation 
coefficient µ of that pixel, and ki and ζi the 
geometric regularization terms. The weights of 
the terms are denoted by α and ß, while Δt is the 
time step. The probabilistic term expresses the 
posterior probability of pixels along an interface 
belonging to the retinal layer above the interface 
(li) as:  
  
Pr(li|µ)=        (2)  

Where Pr(li|µ) is the likelihood based on the 
available image data inside the set Ωi 
containing all pixels assigned to layer li, and 
Pr(li) is the prior for layer li. The prior 
probability combines prior knowledge on the 
attenuation coefficient values and on the order 
of the layers and their thickness. Finally, the 
probability density function Pr(µ|li) can be 
approximated by the normalized histogram 
Pr(µ|Ωi) of all pixels assigned to layer li. In 
some cases, the layers are no longer 
homogeneous but show large attenuation 
coefficient variations, which affect both the 
likelihood estimation as well as the use of prior 
knowledge. Furthermore, the presence of 
lesions impacts both the topology and 
morphology of the macula.  
  
C. Lesion segmentation  
  In CSR, fluid accumulates above the RPE and 
creates a sub retinal fluid pocket. In our 
framework, this fluid is modeled as an 
additional layer present within another retinal 
layer surrounded by the IS ellipsoids and the 
posterior RPE boundary. Hence, two auxiliary 
interfaces are introduced. These auxiliary 
interfaces are propagated according to equation 
1 by utilizing the difference in the estimated 
attenuation coefficient values of the 
surrounding layers and prior knowledge. Prior 
knowledge about the order of layers was 
enforced such that the fluid is contained 
between the IS ellipsoids and the posterior RPE 
boundary. However, no prior knowledge on the 
thickness of the fluid pocket was imposed. As 
mentioned, in areas and scans without lesions, 

the additional layer may shrink to a near zero 
thickness. In practice, the layer had a thickness 
varying between 0 - 3.9μm, i.e. less than one 
pixel. Therefore, a thickness of less than 3.9μm 
was interpreted to indicate that no lesion was 
present at that location. In AMD, disruption of 
the RPE occurs and extracellular material starts 
to accumulate resulting in the formation of 
drusen. As a result of this disruption, Bruch’s 
membrane becomes separated from the 
posterior RPE boundary. However, the 
membrane is only visible below the drusen, 
whereas in areas and eyes without drusen it 
remains adjacent to the posterior RPE boundary 
and cannot be discerned. Therefore, drusen can 
be considered as a layer between the posterior 
RPE boundary and Bruch’s membrane. As one 
of the boundaries of drusen coincides with an 
interface between retinal layers, only one 
auxiliary interface is introduced which 
corresponds to the Bruch’s membrane. The 
segmentation of Bruch’s membrane is 
frequently obtained by taking a convex 
envelope of the posterior RPE boundary. All 
elevation of the posterior RPE boundary higher 
that 20μm and larger than 25μm in diameter.  
 
D. Initialization  

  Propagation of the level set functions is done by 
simultaneously solving the set of partial 
differential equations that drive the current 
segmentation of the retinal interfaces to its 
minimum energy state. The initialization stage of 
the segmentation framework, that is based on a 
minimum cost path search and that is applied to 
individual B-scans, was adapted to accommodate 
the possible presence of lesions. The cost 
function for the posterior RPE boundary was 
modified and instead of initializing ellipsoid 
boundary was initialized. Two additional nodes 
with zero cost, that connect each pixel in the first 
and the last A-scans were added, to make the 
initialization process fully automatic. The RPE is 
primarily a horizontal layer. However, in eyes 
affected by dry AMD, drusen appear as vertical 
elevations of the posterior RPE boundary and the 
RPE is no longer approximately horizontal. Our 
previously used cost function for the posterior 
RPE boundary was based on the derivative in the 
z-direction (as the RPE was horizontal). Due to 
vertical changes in the RPE, our new approach 
also included the derivative in the x-direction in 
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the cost function (fc), which was defined as 
follows: Fc=(1-(gz*I)/(max(gz*I)))+(1 -
(abs(gx*I))/max(abs(gx*I)))   (3)   Where I stand 
for a B-scan, gz and gx are Gaussian derivatives 
in the z- and x-direction, respectively. For other 
interfaces (the vitreous-RNFL and IS ellipsoid 
boundary),  
only the derivative in  the  z-direction  is  
considered  and  the  cost  function is defined as 
follows:  
Fc=1-(gz*I)/(max(gz*I)).The initialization was 
performed in a sequential manner, by first 
initializing the posterior RPE boundary. Then, 
the vitreous-RNFL interface was initialized by 
limiting the search region to the area above the 
posterior RPE boundary. Finally, the IS ellipsoid 
boundary was found by limiting the search area 
to the region bounded by the vitreous-RNFL 
interface and the posterior RPE boundary.   
 
III. RESULT AND DISCUSSION  
   The results represents the Manual and 
automatic detection of macular disorders. The 
Automatic detection means the automatically 
layer detected image can be obtained, from the 
layer segmented images we can find out the 
abnormalities of the macula. From this 
abnormality we can obtain macular disorders 
automatically. This also helps ophthalmologist to 
treat the patient with high accuracy rate.  
  

 

IV. CONCLUSION AND FUTURESCOPE  

   The macular disorders are one of the leading 
causes of blindness among majority. There is no 
accurate and automatic method for detection of 

macular disorders. This paper proposed 
automatic layer segmentation for macular 
disorders like macular edema. The segmented 
OCT images can be utilized to detect various 
Macular diseases at earlier stages. Specific 
algorithms or trained classifiers can be developed 
to categorize the diseases. Further optimization 
of the algorithm can speed up the evaluations 
thereby diagnosing the diseases in mean time. A 
more effective and extensive evaluations of eyes 
with or without the lesions in such a way that it 
can help in diagnosing all sorts of Macular 
disorders.  
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