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ABSTRACT: 
Malware has always been a problem in 

regards to any technological advances in the 
software world. Thus, it is to be expected that 
smart phones and other mobile devices are 
facing the same issues. In this paper, a 
practical and effective anomaly based 
malware detection framework is proposed 
with an emphasis on Android mobile 
computing platform. A dataset consisting of 
both benign and malicious applications (apps) 
were installed on an Android device to 
analyze the behavioural patterns. We first 
generate the system metrics (feature vector) 
from each app by executing it in a controlled 
environment. Then, a variety of machine 
learning algorithms:  Ada Boost, Gradient 
Boost, Gaussian Naive Bayes, Random 
Forest, and Decision Tree are used to classify 
the app as benign or malware. Each 
algorithm is assessed using various 
performance criteria to identify which ones 
are more suitable to detect malicious 
software. The results suggest that  Random 
Forest and Decision Tree provide the best 
outcomes thus making them the most 
effective techniques for malware detection. 
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1. INTRODUCTION 
Malware is short form of malicious software. 

The term “Malware” is commonly used 
now-a-days to refer a variety of forms of 
intrusive software such as viruses, worms, 
spyware, trojan horses etc., The common 

function of malware is that they are specifically 
designed to damage, disrupt, steal, and some 
other illegitimate actions. Malware can infect 
any computing machines and the prevention of 
the malware have been well studied for personal 
computers. As the current generation uses 
smartphone more, the chances of malware 
intrusion is more compared to previous 
generation. Users download files like apk’s from 
untrusted third parties which may include many 
malware executable files. They get downloaded 
along with the users downloaded file and get 
executed in the background of our mobile 
device. So, our solutions for finding malware in 
the mobile platform is less compared to finding 
malwares in Personal Computers. 

 
2. LITERATURE SURVEY 
2.1  INPUT VALIDATION TECHNIQUES  
Input validation based attacks occur due to 

lack of inspection or insufficient inspection on 
the input provided by the clients. The two most 
common input validation based attacks are SQL 
injection attacks and Cross site scripting attacks. 

 
2.1.1 SQL Injection Attacks 
 SQL Injection Attacks SQL language being a 

very rich language, paves the way for a number 
of attacks. The first real existence of SQL 
injection was explored in 1998 in a magazine 
Phrack . In this magazine an article on 
implementing attacks using SQL injection was 
explained by Rain Forest Puppy (RFP). An 
extensive study on the SQL injection attack and 
its classification was provided by Halfondetal.,. 
This work classified SQL injection attack based 
on the type of user input, namely Injection 
through cookies, injection through server 
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variables and second order injections. The attack 
was also categorized based on the goal of the 
attacker, namely identifying injectable 
parameters, performing database finger-printing, 
determining database schema, extracting data, 
adding or modifying data, performing denial of 
service, evading detection, bypassing 
authentication, executing remote commands, 
performing privilege escalation. 

Dynamic Analysis Dynamic analysis is done 
during runtime of a web application. The input 
given by the user is extracted and is combined 
with the code of the application to check if there 
is an intended attack. Dynamic analysis unearths 
most of the real time attacks at the cost of 
response time, and thereby affecting the 
performance of the server. Gregory et 
al.,andZhendongsu et al., implemented systems 
that checked queries at runtime to see if they 
conform to a model of expected queries. Taint 
based approaches like the Security gateway, 
implemented by David Scott et al., is a proxy 
filtering system that enforces input validation 
rules on the data flowing to a web application to 
detect and prevent SQLIA and XSS Attacks. 
KonstantinosKemalis et al., developed a 
prototype SQL injection detection system 
(SQL-IDS). This system monitored Java-based 
applications and detected SQL injection attacks 
in real time. The proposed detection technique 
was based on the assumption that injected SQL 
commands had differences in their structure with 
regard to the expected SQL commands that were 
built by the scripts of the web application. 

2.1.2Cross-Site Scripting Attacks  
Certain works provide client side solutions for 

CrossSite Scripting attacks where a change in 
the browser code or a fire wall set up is 
recommended. The disadvantages of these 
works are that client/user involvement is needed 
and the clients need to have technical knowledge 
for implementing these solutions. Peter et al.,  
implemented a system named Secure Web 
Application protocol (SWAP), that uses proxy 
layer and provides a server-side solution to 
detect and prevent XSS attack. It also uses a 
modified browser that detects script content that 
is included by the user. Noxes  is a client side 
solution for XSS attacks. It creates a personal 
firewall on the client side and checks every 

outgoing request and incoming response. It uses 
both manual and automatically generated rules 
to prevent XSS attacks on the client side. 

 
2.2 VULNERABILITY DETECTION IN 

SMARTPHONE APPLICATIONS 
Recent researches carried out in the field of 

Smartphone security have concentrated mostly 
on Android operating system (OS). The security 
issues in Android are a concern owing to the fact 
that it is open source and developing of android 
application is very easy. Adrienne Porter felt et 
al.,  surveyed and classified mobile malwares 
based on their behavior. Some of the commonly 
noted behaviors were, collecting user 
information, sending premium-rate Short 
messaging Service (SMS), malware written for 
amusement, for credential theft, search engine 
fraud and ransom. Different defensive 
mechanisms that were available against these 
malwares were discussed and evaluated. Threats 
have been classified as physical threats, 
application-based threats, network-based 
threats, web-based threats, and mobile 
vulnerabilities by Jalaluddin Khan et al.,. They 
presented a survey on already existing privacy 
threats and defensive mechanisms. Biometric 
authentication was suggested as a defensive 
mechanism for these attacks. 
AlexiosMylonasetal.,classified users based on 
their trust and awareness on web applications. 
They provided a database guideline for trusted 
repository, license and agreement, poor security 
checks, pirated applications and the users’ 
perception. Another type of attack called the 
android scraping was reported by Ken Munro et 
al.,. Android scraping is the unauthorized 
extraction of information from Smartphones. 
Various methods for scraping data were 
discussed, namely 
 

2.2.1 Behavioral Analysis  
Jacob et al., conducted a survey of different 

reasoning techniques used by behavioral 
detectors. They classified these detectors into 
main families, namely stimulation based 
detectors and formal detectors depending on 
their data collection and data interpretation 
mechanisms. Timothy K. Buennemeyer et al., in 
their work introduced capabilities developed for 
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Battery-Sensing Intrusion protection system 
(BSIPS) that raised an alert when an abnormal 
current change occurred. They developed a 
Correlation Intrusion Detection Engine (CIDE) 
that provides power profiling for mobile devices 
and a correlated view of B-SIPS and Snort alerts. 
The B-SIPS client was designed with 
customizable features to accommodate varying 
user skill levels. Users with advanced computer 
skills could configure the application to provide 
more refined detection and alert information. 
The basic users could effectively operate the 
system with default settings. 
 

2.2.2 Signature Based Analysis 
Griffin et al., used signature-based method that 

depended on the identifying unique signatures 
that defined the malware. This work used string 
signatures, each of which was a contiguous byte 
sequence that potentially could match many 
variants of a malware family. A similar work had 
been proposed by Yu Feng et al.,. A system 
named Apposcopy, which used a 
semantics-based approach to identify a prevalent 
class of Android malware that stole private 
information, was developed. It used a high level 
language for specifying signatures of malware 
families and performed static analysis to decide 
if an application was benign or malicious. 
G.Suarez-Tangil et al., introduced a system 
called dendroid based on text mining and 
information retrieval. This system automatically 
classified malicious applications as families 
based on common code structure. For 31 family 
classification this system used vector space 
model. This also provided relationship among 
families and their evolution from common 
ancestors. If an unknown application was 
installed, the system would automatically 
identify its family and assign this application to 
that family. The limitation of these systems was 
that it can be applied only to known malicious 
code. 

 
III.SYSTEM ANALYSIS 
A. Existing System 
In this existing system, But the main point is 

now days malware writers have techniques such 
as polymorphism which can fool these 
pattern-based methods very easily. But there is a 

different approach that can try that is malware 
detection behaviour-based techniques. This 
approach is very different than pattern based as 
here check behaviour and collect its information 
by executing it and that information we will use 
inorder to detect malware or not. In general, 
most of the time we can observe that new 
malware’s that arise on a regular basis are just a 
little changed version of older malware using 
some clever techniques. So, this should be clear 
by now that techniques based on behaviour of 
malware are a great choice in order classify or 
detect malware. 
 

Limitations 
• Efficiency levels are very low 
 
B. Proposed System 
For each newly collected unknown Android 

app, it will be first parsed through the unzipper 
and decompiles to get the smali codes, then its 
API calls will be extracted from the smali codes, 
and the relationships among these API calls will 
be further analysed. Based on the extracted 
features and using the constructed classification 
model, this app will be labelled as either benign 
or malicious. Classification is the only technique 
used to categorize the given app  as malicious or 
the genuine one. 

Advantages 
• Efficiency levels are high 
C. Hardware Requirements 
• System :Windows 
• HardDisk : 120 GB. 
• Monitor : 15’’ LED 
• Input Devices : Keyboard, Mouse 
• Ram : 4GB 
D. Software Requirements  
• Python 
• Included development tools: Jupyter 

Notebook,  Spyder etc., 
• Compatible tools: PyCharm 
E. Architecture 
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Fig. 1: Architecture 
IV. MODULES AND  DESCRIPTION 
A. Modules 
1. Mobile Agent 
• Resource Monitoring Component 
2. Analysis Server 
B. Modules Description 
1. Mobile Agent 
Mobile Agent is the Module which is used to 

send the data about the app when the features of 
it are extracted, to the Analysis Server. In this 
Module, the normal app and the malicious app 
are given as input. After the input is given to it, 
the feature extractor does the process of 
extraction of feature by sending the app for 
execution where it is checked for the libraries 
and other framework in the Linux kernel. The 
data is sent to the “Resource Monitoring 
System”.  

Resource Monitoring System: 
The extracted features are sent to this Module. 

This module consists of Network Collector, 
Memory Collector, Battery Collector, CPU 
Collector. The malicious file may effect one of 
the above resources. Therefore, the features 
which effect those, are extracted and sent to the 
Data Management Module. Further, the data is 
vectorized and the vectorized data is sent to the 
Analysis Server. 

2. Analysis Server 
In this Module, the vectorized data, collected 

from the Mobile Agent, is received. The 
Vectorized data may be of either Malicious App 
data or Genuine App Data. The machine gets 
trained with the dataset given in prior by the 
admin. After the training phase of machine, the 
data from the above module is entered into the 
testing phase where the Classification 
Algorithms are applied. Those Algorithms 

categorize the benign and malicious data. Finally 
the Prediction is shown, which algorithm shows 
more accuracy in-terms of Classification.     

 
V. IMPLEMENTATION 
1. Data Collection 
In this we have used a dataset which is 

obtained from the *******. It contains all the 
features for an app being malicious to predict 
whether the given app is benign or not. All the 
features represent the app as malicious or benign 
based on many values present in the dataset. 
There are many datasets present in Kaggle, 
Github and other repositories which are used not 
only Malware classification but also in Genre 
Classification etc., As we wanted to use for 
Malware and Benign Classification, this dataset 
is very helpful and shows high accuracy in 
finding or in prediction of Malware. 

2. Data Description 
Our dataset contains many features which are 

used to categorize the malware and benign apps. 
There are a total of 54 features which help in 
classification of them. But the main features 
which our project extracted for the Classification 
is 13. Some of the features are: 
Subsystem, Dll Characteristics, Size of Optional 
Header, Resources Max Entropy, Sections  Max 
Entropy, Major Subsystem version, Size of 
Stack Reserve, Major Operating SystemVersion 
etc., 

 
Outputs are represented in the form of 

percentages of accuracy values of each 
Classification Algorithm. The final accuracy 
shows how best the Algorithm is interms of 
prediction. 

 
VI. FUTURE ENHANCEMENT 
As we know the same malware doesn’t 

continue to be long time. New forms malware 
and its intrusion is possible in the days ahead. 
So, we would like to modify the following in our 
project. 

 
• Increase the size of the training set. 
• To use Algorithms which gives more 

accuracy if any new kind of malware evolves. 
• Implement unique techniques to control the 

malware. 
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VII.CONCLUSION 
We can predict that it is possible to reduce the 

number of malware by being analysed for mobile 
malware detection, while maintaining high 
effectiveness and accuracy. This technique has 
been designed to extract not only significant 
permission detection analysis, but also many 
other modes for creation of malware through a 
systematic approach. 
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