

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

65

 MULTIDIMENSIONAL DATA CUBE APPROACH VERSUS
MATERIALIZED QUERY APPROACH

Sonali Chakraborty1, Dr. Jyotika Doshi2
1Gujarat University, 2GLS University

Abstract
For Online Analytical Processing,
multidimensional cubes serve as a
dimensional structure of star schema. It
stores data warehouse aggregates having
n-dimensions. Millions of aggregates are
possible for large enterprise requiring huge
storage space for precomputing and
materializing all the cuboids. Probability that
user will require all aggregates on all
members of each dimension is very less.
Materialized query approach stores query
fired by the user in a relational database with
its result, timestamp, threshold and
frequency without the need of updating it
with every data warehouse refresh.
Incremental updates are done on the results
only when query is fired next time, hence
reducing processing time. Another advantage
of proposed approach is the possibility of
storing non-aggregate results.
Index Terms: Multidimensional Data Cube,
Materialized Query, Saving storage space,
OLAP

I. INTRODUCTION

 Materialized query approach suggests storing
executed query along with its result and other
factors like timestamp, frequency and threshold
in a relational database. If an equivalent query is
fired next time, result extraction from data
warehouse can be avoided, or only incremental
updates can be done; thus saving processing
time.

The probability that user will be interested and
will require all aggregates on all members of
each dimension is very less. To eliminate storage
of so many results calculated in anticipation in
case of multidimensional cubes, materialized

queries are proposed. For materialized queries
there is no requirement of precomputing and
storing results. Instead, the query is stored or
materialized only when the user fires the query
for the first time. Updation of all materialized
queries is not done with every data warehouse
refresh. They are updated only when next time
the query is fired. To avoid load on the database
storing the queries, all the queries will be
evaluated periodically based on timestamp and
the threshold values defined for each query.

[1, 2] “A data cube allows data to be modelled
and viewed in multiple dimensions defined by
dimensions and facts”. They do not confine data
to two or three dimensions but are
n-dimensional. In case of three dimensional
cubes, eight types of aggregations or queries are
possible, i.e. 2 n, where n is the total number of
dimensions. The total number of cells in the cube
will be (total members in dimension 1) x (total
members in dimension 2) x (total members in

dimension3). Cube need not have an equal
number of members in each dimension.
To understand the proposed approach, consider
an example of an insurance company.
The stored data is about customers enrolled for
various policies.
Dimensions involved in this example are like
customer’s id/name, birth date, gender, marital
status, city, annual income, policy name, policy
category, distribution type etc.
Members (distinct values of a dimension) of
some dimensions are as follows:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

66

Dimension Members Number
of
member
s

gender Male, Female 2
city Ahmedabad,

Mumbai, Kolkata,
Delhi

4

marital
status

Single, Married,
Divorced, Widow

4

policy
category

Life-Mandatory
(11), Life-Non
mandatory (10),
Nonlife-mandator
y (0,1),
Nonlife-non
mandatory (00)

4

Table 1: Members of dimensions gender, city,
marital status and policy category.

Measures (usually aggregate) of interest may be
average annual income, total customers having
specific type of policy etc.
Fact is a collection of related data items. It
contains values of dimensions of interest and
values of measures.
It can be well understood with following
examples.

Fact 1: “The average annual income of the
“Male” customers living in “Mumbai”
enrolled for policies under category “11” is
Rs. 5 lakhs”.

Here, the dimensions are gender, city, policy
category while 5 is a measure (average annual
income) calculated considering these
dimensions.

Consider another fact:
Fact 2: “The average annual income of the
“Male” customers having marital status “1”
living in “Mumbai” enrolled for policies
under category “11” is Rs. 5 lakhs”.

The dimensions used in Fact 2 are gender, city,
policy category and marital status.

II. LITERATURE REVIEW

Panos Vassiliadis, Timos Sellis [3] stated that
data cubes provide the functionality needed for
summarizing, viewing, and consolidating the
information available in data warehouses. They
performed comparisons between
relational-oriented, cube-oriented, defined
standards like TPC-D, OLEDB and statistical
models like OOM85, RR91 standards. Panos
Vassiliadis [4] introduces some simple cube
operations. He proposed a model for
multidimensional databases based on the notion
of base cube. It is used for calculation of results
of cube operations and support series of
operations on cube. They preserve the results of
previous operations with applied aggregate
functions. They also provided mapping of
multidimensional model to relational model and
to multidimensional arrays using a mapping
function.

Venky Harinarayan et al. [5] discussed that for
query optimization; some cells can be
materialized instead of computing them from
raw data every time. They investigated which
cells are to be materialized when it becomes too
expensive to materialize all cells. A lattice
framework is used for expressing the
dependencies among views. Then a greedy
algorithm which works on this lattice picks the
views which are to be materialized considering
the constraints.

N. Colossi et al. [6] define metadata
extensions that will help multidimensional
schema designers to describe the structure of
schemas to multidimensional query and analysis
tools. They described Web services for OLAP
providing metadata for multidimensional data
and XML query results. They discussed various
SQL extensions, such as improving grouping
operations to reduce the number of queries to
access cube data hence, increasing efficiency of
the query that is executed, automatic summary
tables or materialized query tables to reduce
query times and extent of redundant query
processing.

Anindya Datta, Helen Thomas [7] propose a
model of data cube and an algebra for supporting
OLAP operations on that cube providing a
means to concisely express complex OLAP

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

67

queries. Usually OLAP products view measures
as functions of dimensions hence, making
dimensions and measures set static. This restricts
users from generating queries based on measure
restrictions. They demonstrated the capabilities
of proposed algebra which allows uniform
treatment to dimensions and measures i.e. query
dimensions by restricting measures.

Rakesh Agrawal et al. [8] propose a data
model based on hypercube and some algebraic
operations which provides semantic foundation
to multidimensional databases by extending
their current functionality. The approach
provides a symmetric treatment to dimensions as
well as measures and also provides support for
multiple hierarchies along dimensions and
support for ad hoc aggregates.

Prasad Deshpande et al. [9] provide a
framework for computing and evaluating the
cube. They present algorithms using heuristics
based on sorting which tries to minimize disk
accesses by overlapping cuboid computation and
hence reducing the number of sorting steps.

Seok-Ju Chun et al. [10] proposed an
algorithm for reducing cost by maintaining
search efficiency using an index structure
referred as ∆-tree. It is a hierarchical data

structure storing information about the updated
cells in the data cube.

Jayavel Shanmugasundaram et al. [11]
propose a cube compression technique based on
statistical clustering the data. They suggested
that by estimating the probability density of the
data, a compact data representation supporting
aggregate queries can be build.

Chang Li, X. Sean Wang [12] developed an
algebraic query language called as grouping
algebra as an extension of relational algebra.
These relational operations are then used for
manipulating basic groupings for obtaining
complex groupings.

Carlos A. Hurtado et al. [13] discussed the
issue of dimension updates required for adapting
multidimensional database. Structural updates of
dimensions also take place such as addition of
categories or modification in hierarchical
structure. With these updates materialized
aggregate views i.e. cubes must be maintained.
In their approach, they proposed a model for
updating domains of dimensions and for
structural updates of the dimensional
hierarchies. They framed an algorithm to
maintain materialized aggregate views over
dimension level.

Paper Description
Panos Vassiliadis [4] Proposed a model for multidimensional databases

based on the notion of base cube.
 Used for calculation of results of cube operations

and support series of operations on cube.
 Provided mapping of multidimensional model to

relational model and to multidimensional arrays
using a mapping function.

Venky Harinarayan et al.
[5]

 Investigation of cells for partial materialization.
 Lattice framework expressing dependencies

among views.
 Greedy algorithm working on lattice, picking the

views to be materialized considering the
constraints.

N. Colossi et al. [6] Described web services for OLAP which provides
metadata for multidimensional data and XML
query results.

 Discussed SQL extensions like improving
grouping operations to reduce number of queries
in cube. Hence, increasing efficiency of the
query that is executed, automatic summary tables
or materialized query tables are generated to

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

68

reduce query times and extent of redundant query
processing.

Anindya Datta, Helen
Thomas [7]

 Model of data cube and algebra to concisely
express

 complex OLAP queries.
 Proposed algebra allows uniform treatment to

dimensions
 and measures i.e. query dimensions by
restricting
 measures.

Rakesh Agrawal et al. [8] Data model based on hypercube and algebraic
operations providing semantic foundation to
multidimensional databases.

 Provides a symmetric treatment to dimensions and
measures

 Support for multiple hierarchies along dimensions
and for ad hoc aggregates.

Prasad Deshpande et al. [9] Framework for computing and evaluating the
cube.

 Algorithms using heuristics based on sorting for
minimizing disk accesses by overlapping cuboid
computation and hence reducing the number of
sorting steps.

Seok-Ju Chun et. al [10] Index hierarchical data structure referred as ∆-tree
storing information about the updated cells in the
data cube.

 Hybrid approach for providing an approximate or
precise result with respect to OLAP range-sum
queries.

Jayavel
Shanmugasundaram et al.
[11]

 Cube compression technique based on statistical
clustering the data.

 By estimating the probability density of the data, a
compact data representation supporting
aggregate queries can be build.

Chang Li , X. Sean Wang
[12]

 Developed an algebraic query language called as
grouping algebra as an extension of relational
algebra.

 Relational operations are used for manipulating
basic groupings for obtaining complex
groupings.

 Also includes order related operations for
retrieving sorted results.

Carlos A. Hurtado et al.
[13]

 Model for updating domains of dimensions and
for structural updates of the dimensional
hierarchies.

 Framed an algorithm to maintain materialized
aggregate views i.e. cubes over dimension level.

Table 2. Summary of related work

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

69

III. STORING RESULTS USING

MULTIDIMENSIONAL CUBE

APPROACH AND PROPOSED

MATERIALIZED QUERY APPROACH
For the above mentioned dimensions and
members, n-dimensional cubes will be formed.
One may derive many facts from the cube by
applying different aggregates such as sum,
average, max and min.

Fig.1. A 3-D data cube calculating measures
for the average income of customers having
dimensions gender, policy category and city.

Total number of cells without hierarchies =
number of members in gender x number of
members in policy category x number of
members in city i.e. (2 x 4 x 4 = 32 cells).

For the fourth dimension, marital status having
four members, cuboids generated are as follows:

Fig. 2. A 4-D data cube calculating measures
for the average income of customers having
dimensions gender, policy category and city,
marital status.
To find aggregate for 200 cities, for 100 types of
policies over 30 distribution channels, a 3 D
cube will have 6, 00,000 aggregates.

For given set of dimensions, cuboids are
generated for each possible subsets of
dimension. This results into lattice of cuboids
forming a data cube. In this way, 2n cuboids or
group-by can be computed, where n is the
number of dimensions. This huge storage space
requirements problem is referred to as curse of
dimensionality [1].

The equivalent SQL query for the
3-Dimensional cube for Fact1 is:
SELECT Avg (customer.annual_income) AS
AvgOfannual_income, customer.city,
customer.gender, category.type
FROM ((category INNER JOIN policy ON
category.cat_id = policy.cat_id) INNER JOIN
cust_policy ON policy.pol_id =
cust_policy.po_id) INNER JOIN customer ON
cust_policy.c_id = customer.c_id
GROUP BY customer.city, customer.gender,
category.type;

SQL query for Fact 2:
SELECT Avg (customer.annual_income) AS
AvgOfannual_income, customer.city,
customer.gender, category.type,
customer.marital_status
FROM ((category INNER JOIN policy ON
category.cat_id = policy.cat_id) INNER JOIN
cust_policy ON policy.pol_id =
cust_policy.po_id) INNER JOIN customer ON
cust_policy.c_id = customer.c_id
GROUP BY customer.city, customer.gender,
category.type, customer.marital_status;

Result generated when SQL query is fired for
Fact 2.

Fig. 3. Average annual income calculated after
performing group by on four dimensions (city,
gender, policy category, marital status).

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

70

For Fact 2, if average income of customers is to
be calculated for marital status =1, the results
satisfying the criteria is fetched from the
previous stored result.

Fig. 4: Results fulfilling criteria “marital status
= 1” extracted from previous stored result

Results of the query can also be grouped based
on data warehouse refresh dates.
E.g. Query for Fact 2 was last fired on
“20-12-2016” (dd-mm-yyyy) (timestamp for
Fact 2 query).
Data warehouse refresh were done on
“01-09-2016”, “15-12-2016”.
When the query was fired on “20-12-2016”, it
extracted the results till data warehouse refresh
date of “15-12-2016”.

Fig. 5. Average annual income of customers as
per data warehouse update on “15-12-2016”.

Data warehouse refresh was later done on
“22-12-2016” and again the query for Fact 2 is
fired on “25-12-2016”.

Fig. 6. Average annual income of customers
for the data warehouse refresh after
15-12-2016.

Next time when any materialized query is fired
incremental updates are done from warehouse
data and is appended with the past result. Its
result, timestamp, frequency values are updated.

Fig.7. Average annual income of customers
grouped by data warehouse refresh dates.

The probability that fired query is not
completely equivalent to materialized query is
high. Variation among queries can be with
respect to fields used in query for performing
group-by. The varying fields can be overwritten /
added / removed from the materialized query.
Query will be executed from the data warehouse
and the result is updated.

Example: In Fact 2, the average income of
customers was calculated based on dimensions
city, gender, policy category and marital status.
Next time when the query is fired average
income of customers is to be calculated
excluding dimension city.

Fig. 8.Average annual income of customers
grouped by gender, policy category, marital
status.

Unlike multidimensional cubes, materialized
queries can also be fired for non-aggregate
output.

Example: Finding names of the policies enrolled
by the customers staying in “Mumbai”
SELECT policy.pol_name, customer.city
FROM policy INNER JOIN (cust_policy INNER
JOIN customer ON cust_policy.c_id =
customer.c_id) ON policy.pol_id =
cust_policy.po_id
GROUP BY policy.pol_name, customer.city

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

71

HAVING (((customer.city) ="mumbai"));

Fig. 9. Non-aggregate output for a materialized
query

Threshold values vary depending on results
fetched by the queries.
 For e.g. Management generates monthly reports
for getting count of customers enrolling for
various policies. The related query will be fired
at least once in a month. Whereas calculating

total premium collected in a year grouped by
policies will require the query to be fired
annually. While saving query in database, these
thresholds are defined.
Frequency of the query is updated every time it
is executed. If any query is inactive i.e.
frequency is less than defined threshold, then it
is removed from the relational table. Evaluation
of frequencies of materialized queries and
removal of inactive queries saves storage space.

Following table shows comparison between
multidimensional cubes and materialized query
approach.

Multidimensional Cubes Materialized query
 Aggregates are computed for all

dimensions irrespective of queries fired.
 Query is executed and stored only

when it is fired by the user for the
first time.

 If no records for any combinations of
dimensions or members of dimensions
exist, cells will still be generated with
NULL or zero values.

 Rows will not be generated for any
combination of dimensions or
members whose record does not
exist.

 Huge storage space is required to store
aggregates. Number of cells required will
be 2n; n is the number of dimensions.

 Less storage space required
compared to multidimensional
cubes.

 Storage space can be reduced by
performing partial computation.

 Storage space is reduced by
periodically evaluating
frequencies of queries and
removing them if no longer
required.

 In partial computation, user defined criteria
has to be configured. Criteria may not be
same for all queries.

 Threshold value is decided by the
user for each query and it depends
on the nature and type of query.

 Usually multidimensional cubes are
refreshed with every data warehouse
refresh.

 Materialized query is refreshed only
when it is fired next time. Only
incremental updates are done on it.

 Measures are calculated which are
generally aggregate values.

 Query having non aggregate output
are also executed.

 Cuboids are generated for each
combination of dimension.

 No separate relational tables are
generated for each combination of
dimension.

 Can be implemented using ROLAP and
MOLAP structures. [1,2]

 Will use only relational database
approach for storing results.

Table 3. Comparison of multidimensional cubes and materialized query

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

72

IV. CONCLUSIONS

Materialized query is a memory efficient
approach which is stored along with its result
only when it is fired by the user. Factors stored
with the query like frequency, threshold helps
eliminating non-frequent queries. These
properties reduce the storage requirements. No
rows are allocated for the combination of
dimensions or members for which records do not
exist. With materialized query updating
incrementally, query processing time reduces
compared to multidimensional cubes.

 REFERENCES
[1] Jiawei Han, Micheline Kamber, and Jian Pei.

Data Mining-Concepts and Techniques,
Third Edition, Morgan Kaufman Publishers.

[2] G. K. Gupta. 2014. Introduction to Data
Mining with Case Studies, PHI Learning
Private Limited

[3] Panos Vassiliadis and Timos Sellis., “A
 Survey of Logical Models for OLAP
databases,” ACM SIGMOD Record, Volume
28, Issue 4, Dec.1999, 64 – 69.

[4] Panos Vassiliadis, “Modeling
Multidimensional Databases, Cubes and
Cube Operations,” Proceedings of Tenth
International Conference on Scientific and
Statistical Database Management, 1998.

[5] Venky Harinarayan, Anand Rajaraman, and
Jeffrey D. Ullman, “Implementing Data
Cubes Efficiently,” Proceedings of the 1996
ACM SIGMOD International Conference on
Management of data, 205-216.

[6] N. Colossi, W. Malloy, and B. Reinwald,
“Relational extensions for OLAP,”IBM
Systems Journal, VOL 41, NO 4, 2002.

[7] Anindya Datta and Helen Thomas, “The
Cube Data Model: A Conceptual Model and
Algebra for On-Line Analytical Processing
in Data Warehouses’” Decision Support
Systems, Volume 27, Issue 3,
December1999, 289-301.

[8] Rakesh Agrawal, Ashish Gupta, and Sunita
Sarawagi, “Modeling Multidimensional
Databases,” Proceedings 13th International
Conference on Data Engineering, 232-243.

[9] Prasad Deshpande, Sameet Agarwal, Jeffrey
Naughton, and Raghu Ramakrishnan,
“Computation of Multidimensional
Aggregates,” Proceedings 22nd, VLDB
Conference.

[10] Seok-Ju Chun, Chin-Wan Chung, Ju-Hong
Lee, and Seok-Lyong Lee, “Dynamic Update
Cube for Range-Sum Queries,” Proceedings
of the 27th VLDB Conference.

[11] Jayavel Shanmugasundaram, Usama
Fayyad, and P. S. Bradley, “Compressed
Data Cubes for OLAP Aggregate Query
Approximation on Continuous Dimensions,”
Proceedings of the fifth ACM SIGKDD
International conference on Knowledge
discovery and data mining, 223-232.

[12] Chang Li and X. Sean Wang, “A Data
Model for Supporting On-Line Analytical
Processing,” Proceedings of the fifth
International Conference on Information
and knowledge management, 81-88.

[13] Carlos A. Hurtado, Alberto O. Mendelzon,
and Alejandro A. Vaisman, “Maintaining
Data Cubes under Dimension Updates,”
Proceedings 15th International Conference
on Data Engineering.

