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Abstract 
Identification of useful clusters in large 
datasets has attracted considerable interest in 
clustering process. In the process of generation 
of clusters, selecting initial cluster center 
(centroid) is the key factor that has high 
impact on accuracy of clusters. In existing 
algorithms like K-Means and K-Modes, this 
centroid selection was performed randomly. 
Because different random initializations of 
cluster centroids leads to different clusters, 
current work concentrates on generation of 
initial cluster centers by analyzing properties 
of data and formulating into function. Our 
previous work was concentrated on selecting 
optimal cluster centroid for single variable 
and two variables. This paper proposes a 
trustworthy approach to select centroid for 
multi-variable data. This method is 
independent of clustering algorithms; it can be 
applied to any type of clustering where 
random selection is made. By finding optimal 
centroid, it minimizes the impact of random 
selection of initial centers in  
 Keywords: Cluster centroid; trustworthy, 
and multi-variables. 

 

 I. INTRODUCTION  

     Data mining is the process of extracting or 
mining knowledge from bulky volumes of data 
[9]. Among its number of functionalities, 
Clustering is the major one in which there is still 
a room for research. Clustering is an 
unsupervised learning and generates clusters 
satisfying the principle of less similarity 
between other clusters and more similarity 
within the cluster.  Since data has been clustered 
around centroids, the proposed work has been 

concentrated on identifying optimal centroid 
based on number of variables.   
  
     Current observation shows that, existing 
clustering algorithms selects initial cluster 
center randomly.  selects any data point as initial 
cluster center and performs the clustering 
process. But different random initializations of 
cluster centers can lead to different clusters. 
Therefore choosing the suitable initial cluster 
center is a problem worthy of studying.  
   
    The remainder of the paper is systematized as 
follows: partition 2 focus on relevant study, 
partition 3 provides trust worthy approach to 
find centroid for unconstrained multivariable 
functions, partition 4 presents illustration and 
discussions and partition 5 concludes the 
summary with its future work.  
 

II. RELEVANT STUDY   
Data may be numerical, categorical and mixed. 
Various clustering algorithms support clustering 
of flowing numerical data. Little number of 
clustering algorithms focus on flowing 
categorical data [3].  New data keep on enters into 
the database, the importance of which must be 
added to the existing data clusters. Most popular 
K-means and K-modes algorithms are applied to 
handle streaming data [15] and at the same time 
suffers from problems of random initializations.   
A validity function treated as the objective 
function [11] for evaluating the effectiveness of 
the clustering model where incoming data is 
flowing always. An iterative optimization 
algorithm is used for solving an objective 
function. Proposed method for selection of initial 
cluster center needs preprocessing for analyzing 
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the properties of data. Depending on these 
properties the objective function is formulated 
[14]. Our previous work was for selecting initial 
cluster center for single variable function, two 
variable functions and unconstrained multi 
variable and so on [16,17,18,19,20,21]. Now it is 
concentrated on identifying optimal centroid for 
multi-variable data with gradient information.  
Survey was done for this purpose and observed 
the following concepts.  
    For all the methods that employ gradient 
information,   exist and are 
continuous where f(y) is  
value of function at the given point y,  is the first 
order partial derivative of function or gradient 
and  second order partial derivative of function or 
Hessian matrix. Cauchy’s method takes 
stationary point  in the design space and will 
determine the most local descent direction by 
considering the Taylor expansion by ignoring 
terms higher than degree 2. The method of 
steepest descent is to solve linear equations by 
using eq.―(1)ǁ   
y(i+1) = y(i) – θ(i)                                      (1)  

where y(i)  is the current estimate value. θ is the 
fixed positive step length parameter. The suitable 
value of θ has to be made and its value keeps on 
decreases near the minimum. θ has to be adjusted 
at each iteration. θ(i) was determined such that 
f(y(i+1)) is minimum.  Because of line search using 
eq.―(1)ǁ this method is more reliable than simple 
gradient method, but still the convergence rate 
will be insufferably slow for most of practical 
problems. Though this method is not having 
immense practical value, it reveals the procedure 
of most of gradient-based methods. The method 
will come close to the minimum slowly. It is 
assured that   f(y(i+1)) ≤  f(y(i)). The method 
requires only objective and gradient values at 
each iteration. Newton’s method extends this 
strategy by using higher order information by 
using eq.―(2)ǁ namely second order derivatives,  
for constructing  more global strategy [13] for 
which it obtain Taylor expansion by ignoring the 
terms higher than order 3 and forms quadratic 
approximation function.  

    y(i+1)=y(i) -                         (2)  

    This method minimize a quadratic function in 
exactly one step. It is unreliable for 
nonquadratic functions. This method is 
modified to eq.―(3)ǁ by adding a line search. 

Now it is reliable and efficient.                           

y(i+1)=y(i)-  θ(i)                     (3)  

    Hestenes and Stiefel [10] put out conjugate 
gradient method  which is iterative for solving 
linear equations. Next, FR [6] proved quadratic 
convergence and extended to nonquadratic 
functions. FM [7] expressed the utility of the 
method to linear sets that result from finite 
element discretizations with  sparse coefficient 
matrix. MC [12] gave an extension to FR method 
as eq.―(4)ǁ   
       
           y(i+1)=y(i)+θ(i){  }                     (4)  
   
where   θ(i)  and    are required at each iteration and 
d is search direction. It is efficient w.r.to number 
of iterations but more function and gradient 
evaluations are needed. To locate the minimum 
for quadratic functions N line searches  and N-1  
conjugate search directions  are needed in the 
absence of round-off error. Here N is problem 
dimension. For non quadratic functions, more 
directions and line searches are necessary. FR 
method assumes both a quadratic objective and 
exact line searches. Some computational 
experience by a number of investigators suggest 
it is prudent to restart i.e., set d(y) = -  
every N or N - 1 steps. Few works stipulates exact 
line searches by assuming more general objective 
model that produces y(i+1) by using eq.―(5)ǁ.  
    y(i+1)  =  y(i) + θ(i) d(y(i))                            (5)  

   
where  d(y(i))  = -   

    It was proved that this method is superior to the 
FR method for general functions. Furnishes linear 
rate of convergence without restart. Less 
sensitive to inexact line searches.  Methods in 
[1,4] assume exact line searches. But employ 
more general objective function than quadratic 
function. The methods intended to imitate 
positive characteristics of Newton’s method 
(Quasi-Newton Method) generate directions  
using eq.―(6)ǁ with only first-order information   

  d(y(i)) = - M(i)                                (6)  

   
where  M(i) is N x N matrix. The Davidon–
Fletcher–Powell (DFP) method is robust and 
does well for extensive practical problems. The 
major disadvantage is storing of N x N matrix M. 
Another method proposed almost simultaneously 
by BFGS [2,5,8,22] has received wide approval 

  +   
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because of its  advantages, such as, reduced need 
to restart, less dependent upon exact line 
searching using eq. ―(7)ǁ  

(7)  
 

III. PROPOSED  METHOD  
     All these methods discussed in relevant study 
differs in the appropriate search direction from 
current iteration to next iteration. But all these 
methods follow line searching strategy that 
consumes most of the time. Hence we propose the 
trustworthy gradient based method that does not 
use line search strategy. Functions of multi-
variables are constrained or unconstrained. 
Proposed work concentrates on finding centroid 
(minimum point) for unconstrained objective 
function with multi-variables based on gradient 
information.      Trust region methods use a 
slightly different strategy than all the methods 
focused on relevant study. This method forms a 
trustworthy approximation of ƒ(y) and computes 
minimum. The trust region is defined as ―a 
neighborhood around the current iterate y(t) in 
which the current approximation of ƒ(y) produces 
the descentǁ. Now the importance shifts from 
producing descent directions to outlining safe 
approximations to ƒ(y). The method challenges to 
take advantage of ―both the steepest descent and 
Newton methodsǁ by modifying the diagonal 
elements of the Hessian matrix H. The procedure 
includes following steps.  
  
Step 1:  Start by defining y(0) which is an initial 
estimate of y*,                K  is  maximum  number  
of  iterations  allowed,  Ɛ  is               convergence 
criterion and set i=0, constants β(0) = 104 ,              
C1(0<C1<1) and C2(C2>1) Step 2: Compute 
gradient of function .  
Step 3: Test for optimality.  if || ||< Ɛ  then  

print  the  results  and  stop  the               
process.  else go to step 5.  

Step 4: if i≥K, then print the results and stop the 
process.              else go to step 5.  
Step 5: Compute the new vector  

             y(i+1)  =  y(i) + d(y(i))  
Step 6: Search direction d(y(i)) = -[H(i) + β(i) 
I]-1  Step 7: Compare the values of 
f(y(i+1)) and f(y(i)).              if f(y(i+1)) < f(y(i)) 
then set β(i+1) =  C1 β(i)  and i=i+1.                                           

Go to step 2.  else set β(i) = C2 β(i). Go to step 
6.   
   This method is simple, the descent property, the 
outstanding convergence rate near y*and the 
absence of a line search. This is the motivation to 
introduce this method for multi-variables based 
on gradient information.   
 

IV. ILLUSTRATION AND DISCUSSIONS   
    Among the methods discussed in our relevant 
study that deals with unconstrained gradient 
objective function with multi-variables, a study 
was performed by Sargent including the BFGS, 
DFP, and FR algorithms by testing the effect of 
line search termination criteria. Their results 
indicate the superiority of the BFGS method of 
quasi-Newton methods for general functions. The 
tests performed on the problems for relative 
computational efficiency using the methods such 
as Powell’s direct-search method, DFP and 
Newton’s method for structural applications. 
Shown that DFP and Newton’s methods are 
superior to Powell’s method. DFP  superior to 
Newton’s method for large problems. But it is fair 
to say that the tests suggest a superiority of the 
BFGS method over other available methods.  All 
these gradient based methods uses common 
gradient based algorithm that computes α(i) such 
that   
  f(y(i) + α(i)d(y(i))) is minimum using θ                   (8)  
where θ is the line search convergence criteria. 
Different methods were produced by defining 
appropriate search direction d(y(i)) in each 
method that are discussed in relevant study of this 
paper.  An efficient implementation would 
certainly contain additional tests for ―(8)ǁ that 
are suggested by DFP. Certainly, exact line 
searches should be avoided whenever possible. 
Tests indicate that line searching is most time 
consuming. Hence proposed trustworthy method 
to find minimum point for unconstrained 
nonlinear objective function with multi-variables 
based on gradient information is better.  
This minimum point acts as optimal centroid.   
  
A. Comparison with  k-means method  
Process of traditional K-Means algorithm [9] is 
shown in ―Fig.1ǁ.Assume set of objects located 
in a particular space  would like to be partitioned 
into three clusters. Then kmeans algorithm first 
randomly chooses three objects as the three initial 
cluster centers represented with red color. Each 

  M ( i)   +   

Where    U=      and I is identity matrix  
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object is allocated to a cluster based on the 
nearest cluster center, encircled by dotted curves, 
as shown in ―1(a)ǁ. Next, the cluster centers are 
revised by recalculating mean of each cluster 
with current objects of the cluster. Then the 
objects are redistributed to the clusters forming 
new centers. This process iterates, leading to final 
clusters with their objects as shown in―1(b)ǁ. 
The new final cluster centers are represented with 
green color.   
 

Figure 1. Clustering of objects using k-means 
algorithm In Fig 1(a) randomly selected any one 
of object as initial cluster center. In this 
randomization any object may be selected as 
initial cluster center. But different random 
initializations lead to different results which has a 
lot of affection on cluster accuracy. This paper 
focuses on identifying minimum that can act as 
initial cluster center for unconstrained nonlinear 
objective function with multivariables based on 
gradient information. It is illustrated below.  
  
Minimize the function f(y1,y2)= y1- 
y2+2y1

2+2y1y2+ y2
2  

From initial point y1=[ y1
1, y2

1]=[0 0] and Ɛ = 10-

2 let C1= ¼,  
C2=2  

 
Iteration 2:  
    =    , ||   || = 1.41 > Ɛ 
Hence compute   =    10-4   
f(y3) = -0.99 x 10-3  < y2 . hence set β(3) = 2500/4= 
625, i=3.  
Repeat this iterative process until the 
convergence criterion is satisfied. If at y4 
convergence is reached then f(y4) will become 
minimum point that is initial cluster center. When 
this approach is applies to the same objects as in  
Fig 1, the minimum point achieved with the 

above illustration act as initial cluster centers 
represented with green color thus by reducing the 
iteration process of Fig 1(a). The result of this 
approach is shown in Fig (2). 
  

 
Figure 2: Identification of initial cluster centers  

  
    So using this approach the iterative process of 
Fig 1(a) can be avoided and also accuracy of the 
clusters can be improved because in the existing 
system clustering results are based on the object 
that is randomly selected may lead to different 
results. One object as initial cluster centroid may 
form different clusters with its objects and at the 
same time another object as initial cluster 
centroid may form different clusters with its 
different objects. The objects in the resulted 
cluster depend on initial cluster centroid selected.   
  
V.   CONCLUSION AND FUTURE WORK      
Existing methods for the problems of this type of 
multivariable functions uses line search which is 
very time consuming process. This paper 
proposes the trustworthy approach with absence 
of line search to find optimal centroid of 
multivariable functions using gradient 
information. But it is necessary to compute the 
Hessian Matrix for every iteration. After finding 
minimum point, applied suitable distance 
measure to form the clusters. This method 
reduces time of line search compared to existing 
methods and minimizes the impact of 
randomness. This method is not limited to single 
type of clustering algorithm, but it can be applied 
to minimize the impact of randomness on 
clustering results.  
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