

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

43

LIVE UPDATING J2EE APPLICATIONS DEPLOYED ON CLOUD
OR DISTRIBUTED ENVIRONMENT

Jalaj Pachouly1, Prof. Varsha Dange2
1Student, Department of Computer Science, Dhole Patil College of Engineering Pune

2Professor, Department of Computer Science, Dhole Patil College of Engineering Pune

Abstract
In the current world, there are very
frequent changes in the industry needs due
to pressing customer requirement,
technology upgrade or fixing security issue
in the currently deployed software, hence
there is a great need of upgrading or
updating the currently running
applications. At the same time considering
the usage of computers for almost in every
domain, there is a lot of usage of horizontal
scaling of software application where we
are running multiple parallel server
deployed in various geographic locations
across the globe using various cloud
providers. As mentioned , there is a great
need to automate the process of upgrading
the software version automatically, without
manual intervention, without stopping the
running servers,without losing the sanity of
the application,smooth migration of coming
request to newer version,Not abruptly
terminating the running process.Current
proposal recommends to use Mutable
Checkpoint-Restart (MCR), a new live
update solution for generic (Multi-process
and Multi-threaded) server programs
written in C. MCR can support arbitrary
software updates and automate most of the
common live update operations, by
allowing the running version to safely reach
a quiescent state and then allow the new
version to restart as similarly to a fresh
program initialization as possible.MCR
provides the smooth migration of software
from one version to other, but still it is not
fully automatic, across the location. I am
proposing the central live update server,
which will be connected to multiple

geographical location where the application
is deployed, and will automatically push the
upgraded version of the software with a
click of a button. At the same time, it will
also perform authentication before
upgrading the version to avoid any
malicious at temp to upgrade the software
from unknown servers or third party with
bad intentions.
Index Terms: Live update, DSU,
checkpoint-restart, quiescence detection,
record-replay, garbage collection, Threads,
OSGI.

Introduction
Coming up with a viable solution which can
help organizations and mission critical
applications to upgrade there deployed
software’s running in a distributed
environment across geographical
location,without manual intervention, using
centralized control while keeping the sanity of
the running system, without loosing the
integrity and data. As the prior work for live
updating the deployed software is quite
limited to apply security patches or hot
deploying the partial functionality which
includes the service restart with manual
intervention is not suitable for many mission
critical application like Medical and Military
usage. Hence it is desired to come up with
some system which provides the full program
upgrade without downtime of the server while
maintaining the required quality parameters
like.

• Data Integrity
Considering many threads running on server,
it is the desired quality that live update is not

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

44

impacting any running process and live data in
erroneous way.

• Smooth migration
Live upgrade process should have good
usability and easy to trigger and should finish
quick and should clean the stale file or older
contents of an upgraded application.

• No data loss
It is very important to ensure that the data
should not get lost while running live update
and proper buffer or persistent state should
be maintained for any important live data if
required to ensure there is no data loss.

• Fully Automated
Once the user triggers the Live update
process from Live update server, then there
should not be any manual intervention on
the application servers, and we should have
the automation scripts which should unfold
the upgraded contents and will do the
needful for automatic upgrade process. It is
important to note however that automation
script should also be the part of the upgrade
process.

• Centralized controlled
Live update server will be centrally located
and will be the place from where Live
update will be triggered to all registered
application servers. There should be a user
interface from where the user can monitor
the live update process getting applied on
the application servers.

• Easy to trigger upgrade
Invoking live update should be as simple as
clicking a button, in response to legacy
mechanism where we need to manually
copy the bundles of binary files and make
them place at appropriate place, run couple
of scripts and so on. • No Customer
interruption

The whole idea is to make the upgrade
frequent which will reduce time to market
for new features in the product, hence it is
important that upgrade process should not
block any of the live customer operation and
should be transparent to user.

• No Service restart
There should not be any down time due to
service restart for upgrading the software
component so claim zero downtime for
mission critical applications.

The main goal of Live updating deployed
software’s is to keep downtime zero and make
the process fully automatic, with smooth
software upgrade in distributed environment,
while preventing any data loss or bad user
experience. To achieve this requirement, it
becomes quite obvious goal to ensure that on
trigger of upgrade System should reach to
Quiescence state in time bounded manner,
hence the primary internal goal is to reach the
Quiescence state using efficient MCR
algorithm.

To summarize

1. Fully automated software upgrade.

2. Cost saving as no manual intervention
needed.

3. Centralized control over upgrade process.

4. Smooth migration of running process to
higher version.

5. Maintaining sanity and secure upgrade

Proposed Live Update System

• Propose profile-guided quiescence, a
technique which allows all the program
threads to automatically and safely block
in a known quiescent state using
dedicated information gathered during an
offline profiling phase.

• Propose mutable re initialization, a
technique which record-replays start up
operations between different program
versions and exploits existing code paths
to automatically reinitialize the new
program version, its threads, and a
relevant portion of its global data
structures.

• Propose mutable tracing, a technique
which transfers the remaining data
structures between versions using precise
(when possible) and conservative
(otherwise) GC-style tracing strategies.
Benchmark the e effectiveness of our

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

45

techniques in Mutable Checkpoint-
Restart, a new live update solution for
generic server programs written in
C/Java.

• Providing hot deployment with
Completely automated process which is
driven by central Live update server, tar-
getting Java/J2ee servers and programs.

Relevant mathematics associated with the
Project

S= {S1,S2,S3,..Sn}
Here S is a set of Servers running in parallel

L → Centrally Located Live Update Server

T ={T1,T2,T3,..Tn}
Here T is a set of Trigger events generated by L

Q ={Q1,Q2,Q3,..Qn}

Here Q is a set of Quiescence state for various
servers

Ideal Case :

Q1t = Q2t = Q3t:::: = Qnt

Here t is a time to reach the Quiescence state

R ={R1,R2,R3,..Rn}
Here R is a set of Reinitialzization time of server
after upgrade

R1= R2= R3.... = Rn

Input → Update Trigger Event to MCR enabled
server = T

Output → Server re-initialization after upgrade

S0 ={S10,S20,S30,..Sn0}

S0 = S + δ
δ → Change in software

MCR Enabled Server Program

Fig 1: MCR Enabled Server[1]

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

46

Fig 2: Quiescence detection protocol pseudocode.[1]

The COORDINATOR code runs on a separate
thread. The QUIESCENTPOINT is called by

application threads when a quiescent point is
reached.

Methodology and Architecture
Mutable Checkpoint-Restart (MCR) is a proposed solution to achieve the mentioned goals here.

Fig 3: System Architecture[1]

Fig. 3 illustrates

1. The MCR process where we have MCR
enabled server, and developer request a new
version push.

2. Here developers action triggers the
quiescence state in the MCR enabled server,

reinitialized the server configuration to
accept the request changes.

3. It also transfer the state of current running
programs to newer version .

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

47

Fig 4: Live Update Process

Fig. 4 illustrates

1. The Live update server , with multiple sites
running application which might need an
upgrade for a newer version.

2. Live update communication will happen
over a network link with proper
authentication

3. for faster update, live update server
compress the binary files which will get
uncompressed over the sites and will be
deployed.

Modules Details
1. MCR.
Checkpoint-Restart (MCR), a new live
update solution for generic (multiprocessing
and multithreaded) server programs written
in /java. MCR can support arbitrary
software updates and automate most of the
common live update operations. The key
idea is to allow the running version to safely
reach a quiescent state and then allow the
new version to restart as similarly to a fresh
program initialization as possible, relying
on existing code paths to automatically
restore the old program threads and
reinitialize a relevant portion of the program
data structures. To transfer the remaining
data structures,.

As mentioned it is very important that all
threads running in an application are

reached to quiescent state. then only we
apply the upgrade process.In fact when we
start the live update process, then there will
be a mechanism which is based on profile
guided updates and will lets threads to keep
executing until they reach to a safe stable
state and then make them wait unless the
live update process doesn’t get complete,the
same is true for all running threads in the
system. MCR point can purposefully
introduced in the code, or can be decided by
profiling the application.Once the live
update is triggered, system should not wait
indefinitely to reach the quiescent state. It is
important to ensure that no additional
request should be accepted by the system,
once the live update process started on the
targeted server, and the only ask should be
reach to quiescent state and make the
upgrade success full. This process need to
be efficient, as we might be pausing the
server request handling when switching
from one version to another version, the
whole purpose of this quick transition to
avoid impacting customers request and any
kind of downtime experience for the end
users.
2. Live Update Server. Live update server is

a central server, which hosts the latest
upgrade in the software versions, and
push those upgrades to various sites and
machines on a single click. Server.png

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

48

Fig 4: Live Update Process
3. Authentication Manager. Authentication

manager ensures that Live update server
and the various nodes in the environment
recognize each other, and should not
accept any unauthenticated
communication for server upgrades. It is
important to perform the threat modelling
to ensure that server are not injected with
malicious code while upgrade by
intruders and upgrade process is using
secure connection.

4. File Compressor. This is the module
which will compress the version upgrade
binaries to small size archive file to faster
download. The compressed file will get
un-compressed once downloaded and
triggers the MCR process on the server.
Compression will ensure that network
bandwidth is not wasted and it will take
less time to move upgraded content from
live updated server to actual server where
application is running. It is recommended
to use some frameworks like OSGI which
contains smart jars which has self
initialization capacity hence we can
bundle only relevant modules and
upgrade the system with minimal content
transfer. This will increase the upgrade

process immensely and many servers will
get upgraded quickly.

References

1. Cristiano Giuffrida, Member,
IEEE, Clin Iorgulescu, Giordano
Tamburrelli, and Andrew S. Tanenbaum,
Fellow, IEEE, Automating Live Update
for Generic Server Programs,IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 43, NO. 3,
MARCH 2017.

2. N. Viennot, S. Nair, and J. Nieh,
Transparent mutable replay for multicore
debugging and patch validation, in Proc.
18th Int. Conf. Archit. Support Program.
Lang. Oper. Syst., 2013, pp. 127138.

3. A. Kuijsten, Cristiano Giuffrida, Calin
Iorgulescu, and A. S. Tanenbaum, Back to
the future: Faulttolerant live update with
time-traveling state transfer, in Proc. 27th
Int. Conf. Large Install. Syst. Adm., 2013,
pp. 89104.

4. C. Hayden, K. Saur, M. Hicks, and J.
Foster, A study of dynamic software
update quiescence for multithreaded
programs, in Proc. 4th Int. Workshop Hot
Top. Softw. Upgrades, 2012, pp. 610.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

49

5. C. Hayden, E. Smith, E. Hardisty, M.
Hicks, and J. Foster, Evaluating dynamic
software update safety using systematic
testing, IEEE Trans. Softw. Eng., vol. 38,
no. 6, pp. 13401354, Nov./Dec. 2012. [30]
C. Giuffrida, C.

6. C. Giuffrida and A. Tanenbaum, Safe and
automated state transfer for secure and
reliable live update, in Proc. 4th Workshop
Hot Top. Softw. Upgrades, pp. 1620. Jun.
2012

7. C. Kolbitsch, E. Kirda, and C. Kruegel,
The power of procrastination: Detection
and mitigation of execution-stalling
malicious code, in Proc. 18thACMConf.
Comput. Commun. Sec., 2011, pp.
285296.

8. K. Makris and R. Bazzi, Immediate multi-
threaded dynamic software updates using
stack reconstruction, in Proc. Conf.
USENIX Annu. Tech. Conf., 2009, pp.
3131.

9. S. Subramanian, M. Hicks, and K. S.
McKinley, Dynamic software updates: A
VM-centric approach, in Proc. 30th ACM
SIGPLAN Conf. Program. Lang. Des.
Implementation, 2009, pp. 112

10. A. Baumann, J. Appavoo, R. W.
Wisniewski, D. D. Silva, O. Krieger, and
G. Heiser, Reboots are for hardware:
Challenges and solutions to updating an
operating system on the fly, in Proc.
USENIX Annu. Tech. Conf., 2007, Art.
no. 26.

