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Abstract   
Dynamic compilation and optimization are 
widely used in heterogeneous computing 
environments, in which an intermediate form 
of the code is compiled to native code during 
execution. An important tradeoff exists 
between the amount of time spent 
dynamically optimizing the program and the 
running time of the program. In this paper, 
we explore this trade-off for an important 
optimization – global register allocation. I 
present a graph-coloring register allocation in 
a Kaffe based JIT that has been redesigned 
for runtime compilation. Compared to 
Chaitin- Briggs, a standard graph-coloring 
technique, the reformulated algorithm 
requires considerably less allocation time and 
produces allocations that are only marginally 
worse than those of Chaitin-Briggs. The  
experimental results indicate that the 
allocator performs better than the linearscan 
and Chaitin-Briggs allocators on most 
benchmarks in a runtime compilation 
environment. By increasing allocation 
efficiency and preserving optimization 
quality, the presented algorithm increases the 
suitability and profitability of a graphcoloring 
register allocation strategy for a runtime 
compiler.  
Introduction  
Although Java has for a long time been criticized 
for its slow execution, recent advances in better 
Java class libraries and Just-in-Time (JIT) 
compilation techniques have greatly boosted the 
performance of Java. Some results indicate that 
Java can deliver a performance in the 65–90% 
range of the best Fortran performance for a 
variety of benchmarks and can compete with the 

performance of C++ .A “Just-In-Time” (JIT) 
compiler generates native code from Java byte 
code at runtime. It must improve the runtime 
performance without compromising the safety 
and flexibility of the Java language. . Just-intime 
compilers are invoked during application 
execution and therefore need to ensure fast 
compilation times. Consequently, runtime 
compiler designers are averse to implementing 
compile-time intensive optimization algorithms. 
Instead, they tend to select faster but less 
effective transformations Kaffe is an open source 
implementation of the Java Virtual Machine 
specifications. The Kaffe JVM has been ported 
to a lot of different systems, probably more than 
any other JVM including SUN’s. The Kaffe VM 
is a C based implementation. It also includes 
implementation of the Java API’s. The API is 
also part of the implementation without which 
the Java platform is incomplete.    
  

  
  

Fig. 1. The time-space tradeoff.  
The Java Compilation Process Programs written 
in Java are first compiled into machine-
independent byte codes using a Java bytecode 
compiler, such as  javac. These bytecodes 
are stored in class files to be later read by a Java 
Virtual Machine (JVM). The process of 
executing a Java method is as follows: A JVM 
reads in the bytecodes for each method as each 
method is invoked. The JVM transforms the 
bytecodes into an intermediate representation 
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(IR) and a variety of optimizations are applied. 
The IR is then transformed into assembly code 
which is then transformed into machine code and 
executed.  
The core of a JVM implementation contains an 
execution engine that executes the byte codes. 
There are two popular ways of implementing the 
execution  engine, interpretation and Just-
In-Time  (JIT) compilation. In 
interpretation, a loop repeatedly fetches, 
decodes, and executes the next byte code. The 
interpreter has code to interpret, i.e., to 
accomplish the effect of each form of byte code 
instruction. Many Java JIT systems provide an 
interpreted mode as the initial mode of execution 
or for infrequently invoked methods. For hot 
(frequently executed) methods, typically JVMs 
also provide a JIT that compiles those methods 
to native codes, possibly with optimizations. 
Jikes RVM is unusual among JVMs in that it 
does not include a byte code interpreter, but 
always compiles to native code any method that 
gets invoked. Java is implemented by static 
compilation to byte code instructions for the Java 
virtual machine, or JVM. Early JVMs were only 
interpreters, resulting  in  less than-stellar 
performance: Interpreting byte codes is slow. 
Mere translation from byte code to native code is 
not enough code optimization is necessary too.  
        

 
Overview of JIT compiler  
In order to run efficiently, today’s 
microprocessors must carefully take advantage 
of the registers which reside on the chip. These 
are the closest storage units to the CPU’s pipeline 
and therefore have the fastest access time. In a 
minimal compilation sequence, the front end 
parses the source high-level language code, 
performing lexical and semantic analyses, and 
converting the program into an intermediate 
representation (IR). The compiler backend now 
takes over, translating the intermediate 
representation into instructions in the target 
machine’s native instruction set. After this phase 

of code generation, register allocation is 
performed. At this point, the instructions contain 
references to three kinds of operands: the 
program’s symbolic variables, compiler 
generated temporaries, and machine registers 
that come pre-assigned due to architectural 
conventions. Since accessing the registers is 
much faster than accessing memory (even if the 
request hits in the first or second level caches), 
the object of the register allocation phase is to 
decide which variable and compiler temporaries 
are assigned to registers and which are spilled to 
memory. We seek such a register allocation that 
minimizes spilling — the traffic between the 
registers and memory. We distinguish between 
local and global register allocation. Local 
register allocation seeks to find an assignment of 
variables to registers within a single basic block 
— a linear sequence of instructions that are 
always executed together without interruption. 
Global register allocation seeks to find an 
assignment of variables to registers over a 
procedure’s entire control flow graph — a data 
structure made up of basic blocks, showing the 
conditional and looping structure of the program 
code. This thesis considers techniques for global 
register allocation. Register allocation has been 
shown to be NP-complete. The bin packing 
formulation of register allocation is in fact 
equivalent to the 0-1 knapsack problem. Both the 
graph coloring and the 0-1 knapsack problems 
are classical NP-complete problems Within these 
two formulations, researchers have suggested 
heuristics in an attempt to reduce the complexity 
of the algorithms. Jikes RVM performs register 
allocation for each method, using intra 
procedural allocation. Before register allocation 
the intermediate representation uses an 
unbounded number of registers, called symbolic 
registers. The task of the register allocator is to 
pack symbolics into available machine registers, 
while satisfying some important constraints: If 
two symbolics are live at the same time, i.e., both 
have been loaded or computed and both have 
possible future uses, then the allocator must 
assign them to different machine registers. 
Integers and pointers must go into integer 
registers and floating point numbers into floating 
point registers. Some values are bound to specific 
machine registers, notably arguments to a 
method and the method’s result if any. Also, 
some registers are reserved for special use 
(e.g.,the frame pointer). It is not always possible 
to assign every symbolic to a register while 
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satisfying these constraints. In that case some 
symbolics are spilled, i.e., assigned a location in 
memory. Spilled symbolics must be fetched from 
memory (into one of two registers reserved 
specifically for holding spilled operands) each 
time they are used, and immediately written to 
memory each time their value is updated.  

 
  
  
  
Flow graph of register allocators   
  
Graph-Coloring Register Allocation:  
In order to find an assignment of register 
candidates to machine registers, graph-coloring 
register allocators use information about liveness 
and interference. A variable is said to be live at a 
program point if there is a path to the exit along 
which its value may be used before it is redefined 
. It is dead if there is no such path. A straight-
forward dataflow analysis pass can be used to 
compute liveness information. Roughly 
speaking, two variables are said to interfere if 
they are simultaneously live at some program 
point. A graph-coloring allocator summarizes the 
liveness information relevant to the register 
allocation problem in an interference graph, 
where nodes represent register candidates and 
edges connect two nodes whose corresponding 
candidates interfere. For a k-register target 
machine, finding a k-coloring of the interference 
graph is equivalent to assigning the candidates to 
registers without conflict. The standard 
graphcoloring method, adapted for register 
allocation by Chaitin et al. , iteratively builds an 
interference graph and heuristically attempts to 
color it. If the heuristic succeeds, the coloring 
results in a register assignment. If it fails, some 
register candidates are spilled to memory, spill 
code is inserted for their occurrences, and the 
whole process repeats. In practice, the cost of the 
graph-coloring approach is dominated by the 
construction of successive graphs, which is 
potentially quadratic in the number of register 

candidates. Since a single compilation unit may 
have thousands of candidates (variables and 
compiler-generated temporaries), coloring can 
be expensive. In designing our algorithm, we 
wished to construct the interference graph once 
and then use incremental methods to update the 
graph after spilling and coalescing. To achieve a 
substantial decrease in allocation time, we were 
willing to accept some loss in allocation 
proficiency. To this end, we decided to augment 
the representation of the interference graph. The 
unmodified interference graph is represented by 
two major data structures – a bit matrix and a 
collection of edge sets. The bit matrix indicates 
whether two nodes in the graph interfere. Each 
node in the graph, N, holds an edge-set that lists 
the nodes with which it interferes. In this 
allocator, we added additional information to the 
edge-sets – each edge originating from a node 
contains a tag indicating the type of the edge. We 
classified every edge in the graph as a definition 
edge or use edge. To comprehensively define 
these terms. The procedure for building an 
interference graph traverses the program, 
identifies live ranges, and adds interferences 
between them. A careful examination of the 
algorithm shows that there exist three scenarios 
when an interference edge is added. If the 
algorithm added an edge between live range L1 
and L2, then either:   
1. The algorithm discovered that L2 is live 
at a definition point of L1, in which case the edge  
< L1, L2 > gets classified as a definition edge, or  
2. The algorithm discovered that L1 is live 
at a definition point of L2, in which case the edge  
< L2, L1 > gets classified as a definition edge, or  
for every block B in the procedure iterate through 
every inst. I in B if a load is needed for temporary 
reg. T locate the last def. in B prior to I  if such a 
def. D is found add the edge (T, D) to the graph 
set D to its name before renaming for every def. 
edge <D, E> add the edge (T, E) to the graph if 
D is a copy inst., add an edge between the source 
and T. else if no such def. exists for every value 
L in LiveIn(B) add edge (T, L) to the graph if a 
store is needed for reg. T let D = the name of T 
before renaming for every def. edge <D, E> add 
the edge (T, E) to the graph mark all edges added 
to T as def. edges if the load services multiple 
instructions. Add interferences between T and all 
definitions till the last use of T  remove spilled 
nodes from graph  
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Related Work on Register Allocation  
The first to implement a graph coloring 
algorithm to solve register allocation was 
Chaitin. The approach builds an interference 
graph that represents the interferences or 
overlaps between the live ranges of the variables 
in the code for which one is allocating registers. 
The live range of a variable is the contiguous 
region of the program where definitions flow to 
uses of that live variable. Formally, a variable,  V 
is live at point P if there exists a control path that 
includes P consisting of a definition of V before 
P which reaches a use of V after P .The algorithm 
then tries to find a k-coloring for the interference 
graph where k represents the number of registers 
available on the processor being targeted. 
Determining whether a k-coloring exists is 
known to be an NP-complete problem for k _ 3, 
therefore Chaitin’s algorithm, as in all global 
register allocation algorithms, uses heuristics to 
find a k-coloring or to change the graph in order 
to make it k-colorable. The algorithm proceeds 
by repeatedly removing all those nodes (and their 
corresponding edges) that have degree less than 
k and placing them in a stack to be colored later. 
If nodes remain after this graph reduction phase, 
the graph cannot easily be k-colored. The 
algorithm therefore spills, i.e., copies values to 
memory, one or more live ranges in order to 
transform the graph into one that has a simple k-
coloring. Thus, each spill causes a successive 
graph to be built. The cost of the algorithm is 
dominated by the building and processing of 
these successive graphs, which is in the worst 
case quadratic in the number of register 
candidates. Briggs et al.  use the same order as 
Chaitin to remove nodes, but they continue 
removing nodes and pushing them on the stack 
even if they have k neighbors. This optimistic 
algorithm hopes some neighbors will get the 
same color so that this node can still trivially get 
a color. During coloring if there is not a color 
available (for a node with k neighbors), Briggs et 
al. spill, rebuild the interference graph, and try 
again. It has the same worst case complexity as 
Chaitin but tends to perform better in practice. 
Recently Omri Traub et al.  formulated the 
register allocation problem as a binpacking 
problem. This algorithm allocates registers for a 
code sequence by traversing the sequence in a 
linear scan. When a temporary variable is 
encountered it is placed in a bin. The constraint 
on a bin is that it can contain only one valid value 
at any given point in a program’s execution. If a 

new temporary is encountered and all bins are 
full, one of the values in a bin must be spilled. 
The spilled value marks a split in the temporary’s 
live range. Picking a spill candidate employs a 
heuristic that looks at the distance to the 
candidate’s next reference. This algorithm 
improves on a previous bin-packing allocation 
implementation by being able to allocate and 
rewrite the instruction stream in a single  pass. 
Vegdahl describes a modification to Chaitin’s 
algorithm that leads to a reduction in the number 
of colors (and therefore number of registers 
needed) to color an interference graph. Chaitin’s 
coloring algorithm blocks during the 
simplification stage, that is after all 27 nodes that 
have degree less than K have been removed from 
the graph. At this point, the algorithm splits a live 
range (which introduces spilling), or (in Briggs’s 
algorithm) optimistically continues hoping K-
coloring will still be found. Vegdahl observed 
that merging two nodes in the graph that are not 
neighbors, but that share common neighbors, 
causes a reduction in the degree of any node that 
had been adjacent to both. In some cases, this 
reduction can allow simplification to continue 
without introducing spilling. Also, Vegdahl 
noticed that there were two aspects in Chaitin’s 
algorithm that were non-deterministic. First, 
during simplification there may be many nodes 
that have less than degree K, and the order of 
their removal indicates what color they will get. 
Second, during coloring, there may be more than 
one color to choose from when coloring a node. 
Thus, there are many different colorings of the 
same graph and these colorings can differ in the 
number of colors that are used. This led to the 
insight of applying Chaitin’s algorithm 
repeatedly to the interference graph, and using 
random choices whenever a non-deterministic 
choice was available. Node merging colors 
interference graphs with fewer colors than  
Chaitin’s algorithm and applying Chaitin’s 
algorithm repeatedly by 8% and 0.6% 
respectively. The fact that node merging and 
applying Chaitin’s algorithm repeatedly produce 
improvements over Chaitin’s original algorithm 
are evidence that applying heuristics in several 
phases of the original algorithm proves 
beneficial.   
  
Experimental Setup  
For the experiments we used the KAFFE JVM 
compiler infrastructure since it was modular, 
flexible, and very well documented. The JIT 
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compiles a procedure to native code upon the 
first invocation of the procedure. We 
implemented both the classic Chaitin-Briggs 
algorithm and our allocator in KAFFE JVM. We 
also use JIKES RVM with the GNU classpath for 
our experiment. Now JIKES use linear scan 
register allocation algorithm which will be 
modified by Graph coloring algorithm. We are 
decided to compile and evaluate our benchmarks 
on an Intel Pentium 4, 3.2GHz processor with 1 
GB of main memory running Linux.  
The Pentium 4 has 7 allocatable integer registers 
and 8 allocatable floating-point registers. We 
decided to evaluated the allocators on 
benchmarks from the SPEC CINT2000 suite. We 
selected these benchmarks since they perform 
mostly integer computations. Also normal Java 
programs in interpreted mode are evaluated using 
Specjvm98 benchmark programs which will be  
compared with the JIT compiled programs.  
  
Conclusion  
The optimized graph coloring algorithm when 
implemented under Kaffe JIT surely the runtime 
will be reduced at a minimum of factor of two. 
Here we decided to optimize the register 
allocation in JIKES RVM in a Kaffe based JIT 
by applying graph coloring algorithm. In future 
more concentration can be done on the code 
generation part.  
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