

THE STUDY OF CARTESIAN PRODUCT BASED ON THE THEORY OF BAGS AND FUZZY BAGS

Gyanendra Kumar Panda ${ }^{1}$, Surendra Prasad Jena ${ }^{2}$
${ }^{1}$ Department of mathematics, B.I.E\&T,Barapada,Bhadrak,India
${ }^{2}$ Department of mathematics, S.B women's college, Cuttack, India
Email:gkpbdk@gmail.com ${ }^{1}$, sp.jena08@gmail.com ${ }^{2}$

Abstract

In this paper, we seek the existence of some relations between two bags as well as two fuzzy bags. For that we need the notion of Cartesian product of two bags and two fuzzy bags which have been defined and established few theorems.

Key words: algebra, bags, fuzzy bags, Cartesian product.

1. Introduction:-

The theory of bags as a natural extension of set theory was introduced by cerfetal in 1971, Peterson in 1976 and Yager in 1986. Many result have been established by these authers. Bags have been observed to be an important concept in many information processing, like SELECT in rational data base. The concept of bags with fuzzy elements, which called as fuzzy bags introduced by [1], and was further studied by [2]. In case of a fuzzy bag, an
element may apper repeatedly with different membership grades. Further some operations on bags and fuzzy bags such as sum, removal, union, intersection introduced by [3] and [4].

In this section we study some relations between two bags and two fuzzy bags as such we need the Cartesian product of bags and fuzzy bags have been defined and established some theorems.

2.1 Definitions of Bags:-

A bag B drawn from a set ' X ' is represented by a function count B or C_{B} defined as:-

$$
\text { Св: } \mathrm{X} \rightarrow \mathrm{~N}
$$

Where N represents the set of non negative integers.

A bag B is a set if $C_{B}(X)=0$ or 1 for all $x \in$ X
Some other definitions are as follows:-
2.1.1 The support set

$$
B^{*}=\left\{x \in X: C_{B}(x)>0\right\}
$$

2.1.2 If B_{1} and B_{2} are two bags drawn from a set X, we call B_{1} to be a sub bag of B_{2} denoted by $B_{1} \subseteq B_{2}$ if for all $x \in X$,

$$
C_{B_{1}}(x) \leq C_{B_{2}}(x)
$$

2.1.3 Two bags B_{1} and B_{2} are said to be equal if $B_{1} \subseteq B_{2}$ and $B_{2} \subseteq B_{1}$ denoted by $\mathrm{B}_{1}=\mathrm{B}_{2}$.
2.1.4 B_{1} is said to be proper sub bag of B_{2} denoted by $B_{1} \subset B_{2}$, if for every
$x \in X, C_{B_{1}}(x) \leq C_{B_{2}}(x)$ and there exists at least one $x \in X$ such that

$$
C_{B_{1}}(x)<C_{B_{2}}(x)
$$

2.1.5 A bag B is said to be empty if $C_{B}(x)=$ 0 , for all $x \in X$.
2.1.6 A cardinality of a bag B drawn from a set X is denoted by card (B) and is given by

$$
\operatorname{Card}(B)=[B]=\sum_{x \in X} C_{B}(x)
$$

2.1.7 The insertion of x into a bag B results in a new bag B denoted by $B \oplus x$ such that

$$
\begin{aligned}
& C_{B}(x)=C_{B}(x)+1 \\
& C_{B}(y)=C_{B}(y), \text { for all } y \neq x .
\end{aligned}
$$

2.1.8 Addition of two bags B_{1} and B_{2} drawn from a set X results in a new bag i.e $\mathrm{B}=B_{1} \oplus B_{2}$ such that for all $x \in X$,

$$
C_{B}(x)=C_{B_{1}}(x)+C_{B_{2}}(x)
$$

2.1.9 The removal of x from the bag B results in a new bag B^{\prime} denoted by

$$
\begin{gathered}
B^{\prime}=B \Theta x \text { such that } \\
C_{B^{\prime}}(x)=\max \left\{C_{B}(x)-1,0\right\} \\
C_{B^{\prime}}(y)=C_{B}(y), \text { for all } y \neq \mathrm{x}
\end{gathered}
$$

2.1.10 If B_{1} and B_{2} are two bags drawn from a set X, the removal of the bag B_{2} from the bag B_{1} results in a bag B, denoted by $B=B_{1} \ominus B_{2}$ Such that for all $x \in X$,

$$
C_{B}(x)=\max \left\{C_{B_{1}}(x)-C_{B_{2}}(x), 0\right\}
$$

2.1.11 The union of two bags B_{1} and B_{2} drawn from a set X is a bag B denoted by $B=B_{1} \cup B_{2}$ such that for all $x \in X, \quad C_{B}(x)=$ $\max \left\{C_{B_{1}}(x), C_{B_{2}}(x)\right\}$
2.1.12 The intersection of two bags B_{1} and B_{2} drawn from a set X is a bag B denoted by $B=$ $B_{1} \cap B_{2}$ such that for all $x \in X$
$C_{B}(x)=\min \left\{C_{B_{1}}(x), C_{B_{2}}(x)\right\}$
2.1.13 Two bags A and B are said to be equivalent if and only if $|\mathrm{A}|=\mid \mathrm{B}$

2.2 Results on Bags

Let A, B, C are three bags drawn from the same domain X, then we have as follows:-
I. $\quad A \cup B=B \cup A$
II. $A \cap B=B \cap A$
III. $\quad A \oplus B=B \oplus A$
IV. $\quad A \oplus(B \oplus C)=(A \oplus B) \oplus C$
V. $\quad A \cap B \subseteq A \subseteq A \cup B \subseteq A \oplus B$
VI. $A \ominus B \subseteq A \subseteq A \oplus B$

2.3 Cartesian product of Bags:-

Definition 2.3.1:-
Let A and B are two bags drawn from the domain X . Then their Cartesian product denoted by $A \otimes B$ is a bag drawn from the domain $X \times Y$ such that for every

$$
\begin{aligned}
& (x, y) \in X \times Y, \text { we have } \\
& \quad C_{A \otimes B}(x, y)=C_{A}(x) \cdot C_{B}(y)
\end{aligned}
$$

Note 2.3.1:-
The two bags can be drawn from the same domain.
Example 2.3.1:-
Let $\mathrm{A}=\left\{\frac{x_{1}}{2}, \frac{x_{2}}{3}, \frac{x_{3}}{1}\right\}$
And $\mathrm{B}==\left\{\frac{y_{1}}{2}, \frac{y_{2}}{3}, \frac{y_{3}}{3}\right\}$ are two bags drawn from the domain $X=\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$, then

$$
\begin{gathered}
A \otimes B \\
=\left\{\frac{\left(x_{1}, y_{1}\right)}{2}, \frac{\left(x_{1}, y_{2}\right)}{6}, \frac{\left(x_{1}, y_{3}\right)}{6}, \frac{\left(x_{2}, y_{1}\right)}{3},\right. \\
\left.\frac{\left(x_{2}, y_{2}\right)}{9}, \frac{\left(x_{2}, y_{3}\right)}{9}, \frac{\left(x_{3}, y_{1}\right)}{1}, \frac{\left(x_{3}, y_{2}\right)}{3}, \frac{\left(x_{3}, y_{3}\right)}{3}\right\}
\end{gathered}
$$

Note 2.3.2 :-
If A and B are two bags drawn from the

$$
\text { domain } \mathrm{X}=\left\{x_{1}, x_{2}, x_{3},\right\} \text {, then }
$$

$C_{A \otimes B}\left(x_{1}, x_{2}\right) \neq C_{A \otimes B}\left(x_{2}, x_{1}\right)$, in general

Example 2.3.2:-
Let $\mathrm{A}=\left\{\frac{x_{1}}{2}, \frac{x_{2}}{4}, \frac{x_{3}}{1}\right\}$
And $\mathrm{B}=\left\{\frac{x_{1}}{1}, \frac{x_{2}}{3}, \frac{x_{3}}{5}\right\}$ are two bags drawn from the domain
$\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$, then

$$
C_{A \otimes B}\left(x_{1}, x_{2}\right)=6
$$

And $\quad C_{A \otimes B}\left(x_{2}, x_{1}\right)=4$
Hence $C_{A \otimes B}\left(x_{1}, x_{2}\right) \neq C_{A \otimes B}\left(x_{2}, x_{1}\right)$
Note 2.3.3
If A and B are two bags drawn from the domain $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ then
$C_{A \otimes B}\left(x_{1}, x_{2}\right) \neq C_{B \otimes A}\left(x_{1}, x_{2}\right)$ in general
Theorem 2.3.1:-
For any two bags A and B drawn from the domain X , then
i. $\quad A \otimes B \neq B \otimes A$, in general.
ii. For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, then

$$
C_{A \otimes B}(x, y)=C_{B \otimes A}(y, x)
$$

From example (2.3.1), it can be easily verified. Theorem 2.3.2:-

For any three bags A, B, C drawn from the domain X , then
i. $\quad A \otimes(B \cup C)=(A \otimes B) \cup(A \otimes C)$
ii. $\quad A \otimes(B \cap C)=(A \otimes B) \cap(A \otimes C)$

Proof

i. For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$,then we have

$$
\begin{aligned}
& C_{A \otimes(B \cup C)}(x, y) \\
& \quad=C_{A}(x) \cdot C_{(B \cup C)}(y) \\
& =C_{A}(x) \cdot\left\{\max \left(C_{B}(y), C_{C}(y)\right)\right\} \\
& =\max \left\{C_{A}(x) \cdot C_{B}(y) \cdot C_{A}(x) \cdot C_{C}(y)\right. \\
& \} \\
& =\max \left\{C_{A \otimes B}(x, y), C_{A \otimes C}(x, y)\right\} \\
& =C_{(A \otimes B) \cup(A \otimes C)}(x, y)
\end{aligned}
$$

Thus established the theorem. Similarly the proof of (ii) can be established.
Theorem 2.3.3:-
For any three bags A, B, C drawn from the domain X , then
i. $\quad A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$
ii. $\quad A \otimes(B \ominus C)=(A \otimes B) \ominus(A \otimes$ C)

Proof
i. Let for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, such that

$$
\begin{aligned}
C_{A \otimes(B \oplus C)}(x, y) & =C_{A}(x) \cdot C_{(B \oplus C)}(y) \\
& =\quad C_{A}(x) \cdot\left[C_{B} y+\right.
\end{aligned}
$$

$$
\left.C_{c}(y)\right]
$$

$$
=C_{A}(x) \cdot C_{B}(y)+C_{A}(x) \cdot C_{C}(y)
$$

$$
=C_{A \otimes B}(x, y)+C_{A \otimes C}(x, y)
$$

$=C_{(A \otimes B) \oplus(A \otimes C)}(x, y)$
This proofs the theorem.
ii. Again, let for all $x, y \in X$, so that
$C_{A \otimes(B \ominus C)}(x, y)=C_{A}(x) \cdot C_{(B \ominus C)}(y)$ $=c_{A}(x) .\left\{\max \left(C_{B}(y)-C_{C}(y), 0\right)\right\}$

$$
=\max \left\{\left(c_{A}(x) \cdot C_{B}(y)-c_{A}(x) \cdot C_{C}(y), 0\right)\right\}
$$

$$
=\max \left\{\left(C_{A \otimes B}(x, y)-C_{A \otimes C}(x, y), 0\right)\right\}
$$

$$
=C_{(A \otimes B) \ominus(A \otimes C)}(x, y)
$$

Which completes the proof.

3.1 Definitions of Fuzzy bags :-

A fuzzy bag ' F ' drawn from a set ' X ' is characterized by a count functions,

$$
C F: X \times I \rightarrow N,
$$

Where I is the unit interval $[0,1]$ and N is the set of non-negative integers.
There are some other definitions as follows:-
3.1.1:- Two fuzzy bags F_{1} and F_{2} drawn from a set X are said to be equal denoted by $F_{1}=F_{2}$ if for all
$\mathrm{x} \in \mathrm{X}$ and $\alpha \in I$, then $C F_{1}(x, \alpha)=C F_{2}(x, \alpha)$.
3.1.2:- For any two fuzzy bags F_{1} and F_{2} drawn from a set X, F_{1} is said to be a fuzzy sub bag of F_{2} denoted by $F_{1} \subseteq \mathrm{~F}_{2}$, if for all $\mathrm{x} \in \mathrm{X}$ and $\alpha \in$ I, then $C F_{1}(x, \alpha) \leq C F_{2}(x, \alpha)$
3.1.3:- Let F be a fuzzy bag drawn from a set X , then the fuzzy supporting set of F is a fuzzy sub set of X , whose membership function is given by $F^{*}(x)=\max \{\alpha: C F(x, \alpha)>0\}$,

$$
\text { if }\{\alpha, C F(x, \alpha)>0\}
$$

Is non empty
0 , if $\mathrm{CF}(\mathrm{x}, \alpha)=0$, for all α
3.1.4:-The sum of two fuzzy bags F_{1} and F_{2} drawn from a set X results in a fuzzy bag F denoted by $F=F_{1} \oplus F_{2}$ such that for all $\mathrm{x} \in \mathrm{X}$ and $\alpha \in I$, then
$\mathrm{CF}(\mathrm{x}, \alpha)=\mathrm{CF}_{1}(\mathrm{x}, \alpha)+\mathrm{CF}_{2}(\mathrm{x}, \alpha)$.
3.1.5:- Let F_{1} and F_{2} are two fuzzy bags drawn from a set X. The removal of the fuzzy bag F_{2} from the fuzzy F_{1} results in a fuzzy bag F denoted by
$F=F_{1} \ominus F_{2}$ such that for all $\mathrm{x} \in \mathrm{X}$ and $\alpha \in I$, then
$\mathrm{CF}(\mathrm{x}, \alpha)=\max \left\{\left(\mathrm{CF}_{1}(\mathrm{x}, \alpha)-\mathrm{CF}_{2}(\mathrm{x}, \alpha)\right), 0\right\}$.
3.1.6:- The union F of two fuzzy bags F_{1} and F_{2} drawn from a set X is denoted by $F=F_{1} \cup F_{2}$ such that for all $\mathrm{x} \in \mathrm{X}$ and $\alpha \in I$,
$\mathrm{CF}(\mathrm{x}, \alpha)=\max \left\{\left(\mathrm{CF}_{1}(\mathrm{x}, \alpha), \mathrm{CF}_{2}(\mathrm{x}, \alpha)\right\}\right.$.
3.1.7:- The intersection F of two fuzzy bags F_{1} and F_{2} drawn from a set X is denoted by $F=$ $F_{1} \cup F_{2}$ such that for all $\mathrm{x} \in \mathrm{X}$ and $\alpha \in I$,
$\mathrm{CF}(\mathrm{x}, \alpha)=\min \left\{\left(\mathrm{CF}_{1}(\mathrm{x}, \alpha), \mathrm{CF}_{2}(\mathrm{x}, \alpha)\right\}\right.$.
3.1.8:- Let F be a fuzzy bag drawn from a set X, then the insertion of an element y with membership value ' a ' into F results a new fuzzy bag F_{1} such that

$$
\begin{gathered}
C F_{1}(y, \alpha)=C F(y, \alpha)+1, \alpha=a \\
C F_{1}(y, \alpha)=C F(y, \alpha), \alpha \neq a \\
C F_{1}(x, \alpha)=C F(x, \alpha), x \neq y
\end{gathered}
$$

3.1.9:- Let F be a fuzzy drawn from a set X . Then the removal of an element y with membership value ' a ' from F results in a new fuzzy bag
$F_{1}=F \ominus y$ Such that
$C F_{1}(y, \alpha)=\max \{C F(y, \alpha)-1,0\}, \alpha=a$

$$
\begin{aligned}
& C F_{1}(y, \alpha)=C F(y, \alpha), \alpha \neq a \\
& C F_{1}(x, \alpha)=C F(x, \alpha), x \neq y
\end{aligned}
$$

3.1.10:- If F be a fuzzy bag drawn from a finite set X, then the cardinality of F is denoted by $|F|$ is given by $|\mathrm{F}|=\sum_{x \in X} \sum_{0<\alpha \leq 1} C F(x, \alpha)$ When ever it exists.

3.2:- Properties of fuzzy bags:-

Let $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{3} are fuzzy bags drawn from a set X , then
I. $\quad F_{1} \cup F_{2}=F_{2} \cup F_{1}$
II. $\quad F_{1} \cap F_{2}=F_{2} \cap F_{1}$
III. $\quad F_{1} \oplus F_{2}=F_{2} \oplus F_{1}$
IV. $\quad\left(F_{1} \cup F_{2}\right) \cup F_{3}=F_{1} \cup\left(F_{2} \cup F_{3}\right)$
V. $\quad\left(F_{1} \cap F_{2}\right) \cap F_{3}=F_{1} \cap\left(F_{2} \cap F_{3}\right)$
VI. $\quad\left(F_{1} \oplus F_{2}\right) \oplus F_{3}=F_{1} \oplus\left(F_{2} \oplus F_{3}\right)$
VII. $\quad F_{1} \cap F_{2} \subseteq F_{1} \subseteq F_{1} \cup F_{2} \subseteq F_{1} \subseteq \oplus F_{2}$
VIII. $\quad F_{1} \ominus F_{2} \subseteq F_{1} \subseteq F_{1} \oplus F_{2}$
IX. $\quad\left|F_{1} \cup F_{2}\right| \leq\left|F_{1}\right|+\left|F_{2}\right|$
X. $\quad\left|F_{1} \oplus F_{2}\right|=\left|F_{1}\right|+\left|F_{2}\right|$
(This can be extended for finite number
Of fuzzy bags)
XI. $\quad\left|F_{1} \cap F_{2}\right| \geq\left|F_{1}\right| \ominus\left|F_{2}\right|$

3.3:- Cartesian product of fuzzy bags:-

Definition 3.3.1:-
Consider two finite fuzzy bags F_{1} and F_{2} drawn from a set X, then their Cartesian product denoted by $F_{1} \otimes F_{2}$ is a fuzzy bag drawn from $X \times X$, such that for all $(\mathrm{x}, \mathrm{y}) \in X \times X$ so that
$C\left(F_{1} \otimes F_{2}\right)((x, y), \gamma)=\mathrm{CF}_{1}(\mathrm{x}, \alpha) . \mathrm{CF}_{2}(\mathrm{y}, \beta)$
Where $x, y \in X$ and $\alpha, \beta, \gamma \in I$ with $\gamma=\alpha . \beta$
Note:3.3.1:-
Two finite fuzzy bags can also be drawn from the same set.
Example:3.3.1:-
Let $x=\{a, b\}$ and $y=\{m, n\} \in X$ then $F_{1}=\{(a, .2) / 2,(a, .5) / 4,(b, .5) / 1\}$
And
$F_{2}=\{(m, .3) / 4,(n, .5) / 3,(n, .6) / 5\}$, then

$$
\begin{aligned}
& F_{1} \otimes F_{2} \\
& =\left\{\frac{((a, m), .06)}{8}, \frac{((a, m), .15)}{16}, \frac{((a, n), .1)}{6}\right. \\
& \frac{((a, n), .12)}{10}, \frac{((a, n), .25)}{12} \\
& \frac{((a, n), .3)}{20}, \frac{((b, m), .15)}{4}, \frac{((b, n), .12)}{3} \\
& \left.\frac{((b, n), .3)}{5}\right\}
\end{aligned}
$$

Note 3.3.2:-
For any two fuzzy bags F_{1} and F_{2} drawn from the set X , then
i. $\quad F_{1} \otimes F_{2} \neq F_{2} \otimes F_{1}$, in general.
ii. For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\gamma=$ $\alpha \cdot \beta, \alpha, \beta, \gamma \in I$
Then $\quad C\left(F_{1} \otimes F_{2}\right)((x, y), \gamma)=$ $C\left(F_{2} \otimes F_{1}\right)((y, x), \gamma)$

The above note (3.3.2) can be easily verified by using the example (3.3.1).
Theorem 3.3.1:-
For any three finite fuzzy bags A, B and c drawn from the set X, then
i. $\quad A \otimes(B \cup C)=(A \otimes B) \cup(A \otimes C)$
ii. $\quad A \otimes(B \cap C)=(A \otimes B) \cap(A \otimes C)$

Proof

(i)For any $x, y \in X$ and $\alpha, \beta, \gamma \in I$ with $\alpha \cdot \beta=$ γ, then
$\mathrm{C}\{A \otimes B \cup A \otimes C\}((x, y), \gamma)$
$=$
$\max \{C(A \otimes$
$B)((x, y), \gamma), C(A \otimes C)((x, y), \gamma))\}$
$=\max \{C A(x, \alpha) \cdot C B(y, \beta), C A(x, \alpha) \cdot C C(y, \beta)\}$
$=C A(x, \alpha) \cdot \max \{C B(y, \beta), C C(y, \beta)\}$
$=C A(x, \alpha) \cdot C(B \cup C)(y, \beta)$
$=\mathrm{C}(A \otimes(B \cup C))((x, y), \gamma), \gamma=\alpha \cdot \beta$
This completes the proof of (i) and proof of (ii) is similar

Example 3.3.2:-
Let $X=\{a, b\}$ be a set, then
$\mathrm{A}=\{(\mathrm{a}, .2) / 2,(\mathrm{a}, .5) / 4,(\mathrm{~b}, .5) / 1\}$
$\mathrm{B}=\{(\mathrm{a}, .3) / 4,(\mathrm{~b}, .6) / 5\}$ and
$\mathrm{C}=\{(\mathrm{a}, .5) / 2,(\mathrm{~b}, .7) / 3,(\mathrm{~b}, .4) / 6\}$ so
We have
$B \cup C=\{(\mathrm{a}, .3) / 4,(\mathrm{a}, .5) / 2,(\mathrm{~b}, .4) / 6$, $(\mathrm{b}, .6) / 5,(\mathrm{~b}, .7) / 3\}$

$$
\begin{aligned}
& A \otimes(B \cup C) \\
& =\left\{\frac{((a, a), .06)}{8}, \frac{((a, a), .1)}{4}, \frac{((a, a), .15)}{16},\right. \\
& \frac{((a, a), .25)}{8}, \\
& \frac{((a, b), .08)}{12}, \frac{((a, b), .12)}{10}, \frac{((a, b), .14)}{6}, \frac{((a, b), .2)}{24}, \\
& \frac{((a, b), .3)}{20}, \frac{((a, b), .35)}{12}, \frac{((b, b), .2)}{6}, \frac{((b, b), .3)}{5}, \\
& \left.\frac{((b, b), .35)}{3}, \frac{((b, a), .15)}{4}, \frac{((b, a), .25)}{2}\right\}
\end{aligned}
$$

$A \otimes B$

$$
\begin{gathered}
=\left\{\frac{((a, a), .06)}{8}, \frac{((a, a), .15)}{16}, \frac{((a, b), .12)}{10}, \frac{((a, b), .3)}{20}\right. \\
\left.\frac{((b, b), .3)}{5}, \frac{((b, a), .15)}{4}\right\}
\end{gathered}
$$

$A \otimes C$
$=\left\{\frac{((a, a), .1)}{4}, \frac{((a, a), .25)}{8}, \frac{((a, b), .14)}{6}, \frac{((a, b), .08)}{12}\right.$,
$\frac{((a, b), .35)}{12}, \frac{((a, b), .2)}{24}, \frac{((b, b), .35)}{3}$, $\left.\left.\frac{((b, b), .2)}{6}, \frac{((b, a), .25)}{2}\right)\right\}$
Now, $(A \otimes B) \cup(A \otimes C)$

$$
\begin{aligned}
&=\left\{\frac{((a, a), .06)}{8}, \frac{((a, a), .1)}{4}, \frac{((a, a), .15)}{16}\right. \\
& \frac{((a, a), .25)}{8}, \frac{((a, b), .12)}{10} \\
& \frac{((a, b), .3)}{20}, \frac{((a, b), .14)}{6}, \frac{((a, b), .08)}{12}
\end{aligned}
$$

$$
\frac{((a, b), .35)}{12}, \frac{((a, b), .2)}{24}, \frac{((b, b), .3)}{5}, \frac{((b, b), .35)}{3}
$$

$$
\frac{((b, b), .2)}{6}
$$

$$
\left.\frac{((b, a), .15)}{4}, \frac{((b, a), .25)}{2}\right\}
$$

Hence $A \otimes(B \cup C)=(A \otimes B) \cup(A \otimes C)$
Theorem 3.3.2:-For any three finite fuzzy bags
A, B, and C drawn from the set X , then
i. $\quad A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$
ii. $\quad A \otimes(B \ominus C)=(A \otimes B) \ominus(A \otimes$ C)

Proof(i)
For any $x, y \in X$ and $\alpha, \beta, \gamma \in I$ with $\gamma=\alpha . \beta$ $C(A \otimes(B \oplus C))((x, y), \gamma)$

$$
\begin{aligned}
= & C A(x, \alpha) \cdot C(B \oplus C)(y, \beta) \\
& =C A(x, \alpha) \cdot\{C B(y, \beta)+C C(y, \beta)\} \\
= & C A(x, \alpha) \cdot C B(y, \beta)+C A(x, \alpha) \cdot C C(y, \beta) \\
= & C(A \otimes B)((x, y), \gamma)+C(A \otimes C)((x, y), \gamma) \\
& =C[(A \otimes B) \oplus(A \otimes C)],((x, y), \gamma)
\end{aligned}
$$

This establishes (i) and proof of (ii) is similar.

Conclusion:-

In this paper, we have studied some definitions, results and properties of bags and fuzzy bags. In this connection we have established the relations between two bags as such as two fuzzy bags, so we need the Cartesian product of both bags and fuzzy bags defined and some theorems also established on bags and fuzzy bags.

References:-

[1] yager, R.R, on thetheory of bags, international Journals of General Systems 13 (1986), 23-37.
[2] Chakrabarty, K, Biswas, R., Nanda, S, on Yager's theory bags and fuzzy bags, computers and Artificial Intelligence, 18(1999), 1-17.
[3] Jena, S.P, Ghosh, S.k and Tripathy, B.k, on the theory of bags and lists, information science, 132(2001)241-254.
[4] Jena, S.P, Ghosh, S.k and Tripathy, B.k, on the theory of fuzzy bags and fuzzy lists, International Journal of fuzzy Mathematics. Vol 9, No.4(2001).

