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Abstract 
In this paper a new and efficient method for 
the reliable load flow solution of radial 
distribution system is presented wherein an 
easy and fast load flow solution algorithm is 
used. It fully exploits the radial structure of 
the network and employs an effective data 
structure to identify the nodes beyond a 
particular branch. Using this concept, load 
current summations are calculated to obtain 
the load flow solution. Unlike other 
traditional methods, the proposed method 
considers the effective convergence approach 
which is simple and is capable of reducing 
execution time of the network. 
Index Terms: Constant power load modeling, 
Load currents, Nodes beyond branch, Radial 
distribution systems.  

I. INTRODUCTION 

There are many solution techniques for load 
flow calculations. However, an acceptable load 
flow method should meet the requirements [1] 
such as high speed and low storage 
requirements, highly reliable, and accepted 
versatility and simplicity.  
 The operation and planning studies of a 
distribution system require a steady-state 
condition of the system for various load 
demands. Distribution networks have recently 
acquired a growing importance because their 
extension has quite increased and also because 
their management has become quite complex. 
Unfortunately the techniques widely known and 

used at High Voltage level cannot be 
straightforward applied to distribution systems. 
This is because the distribution systems are 
ill-conditioned systems i.e. the systems which 
show large oscillations in the results by small 
perturbations. Since Low Voltage lines have a 
high R/X ratio. This high R/X ratio [2-4] factor 
of the distribution systems makes them ill 
conditioned and so the need of new and efficient 
method for the analysis of distribution system 
arises. The analysis of distribution systems is an 
important area of activity as distribution systems 
is the final link between a bulk power system and 
consumers. 
 Kersting and Mendive [5] and Kersting [6] 
have developed a load-flow technique for 
solving radial distribution networks using 
ladder-network theory. They have developed the 
ladder technique from basic ladder-network 
theory into a working algorithm, applicable to 
the solution of radial load-flow problems. 
Stevens et al. [7] have shown that the ladder 
technique is found to be fastest but did not 
converge in five out of 12 cases studied. 
Shirmohammadi er al. [8] have proposed a 
method for solving radial distribution networks 
based on the direct application of Kirchhoff's 
voltage and current laws. They have developed a 
branch-numbering scheme to enhance the 
numerical performance of the solution method. 
They have also extended their method for 
solution of weakly meshed networks. Baran and 
Wu [9] have obtained the load-flow solution in a 
distribution system by the iterative solution of 
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three fundamental equations representing real 
power, reactive power and voltage magnitude. 
They have computed the system Jacobian matrix 
using a chain rule. In their method, the 
mismatches and the Jacobian matrix involve 
only the evaluation of simple algebraic 
expressions and no trigonometric functions. 
They have also proposed decoupled and fast 
decoupled distribution load-flow algorithms. 
Chiang [10] has also proposed three different 
algorithms for solving radial distribution 
networks based on the method proposed by 
Baran and Wu [9]. Renato [11] has proposed one 
method for obtaining a load-flow solution of 
radial distribution networks. Jasmon and Lee 
[15, 16] have proposed a new load-flow method 
for obtaining the  solution of radial distribution 
networks. They have used the three fundamental 
equations representing real power, reactive 
power and voltage magnitude derived in [9]. Das 
et al. [14] have proposed a load-flow technique 
for solving radial distribution networks by 
calculating the total real and reactive power fed 
through any node. They have proposed a unique 
node, branch and lateral numbering scheme 
which helps to evaluate exact real- and reactive 
power loads fed through any node and 
receiving-end voltages. 
 The aim of the paper is to propose a simple and 
fast load flow method for radial distribution 
systems. Here, a method is presented for 
identifying the total nodes beyond a particular 
node, which will improve the speed of the 
proposed method. Load flow solution is based on 
simple iterative method of receiving end voltage 
of radial distribution system. The convergence 
of the method is accelerated by a judicious 
choice of the initial voltages and 
power losses are taken into consideration from 
the first iteration. The proposed method is tested 
on standard distribution systems. It is also 
observed that the proposed method has good and 
fast convergence characteristics. Loads in the 
present formulation have been presented as 
constant power. 

II. ASSUMPTIONS 

While implementing all the discussed methods it 
was assumed that: 
1. Three-phase radial distribution networks were 
balanced and represented by their single-line 
diagrams. 

2. Charging capacitances are neglected at the 
distribution voltage level (medium level). 
3. The load flow solution has been computed for 
constant power load modeling. 

 
  Fig.3.  33-bus radial distribution system 

III. SOLUTION METHODOLOGY 

 A 33-bus radial distribution system Fig.3. was 
tested using the proposed method [12-13]. The 
branch number sending-end and receiving-end 
node of this feeder are given in Table 1. Table 1 
also shows the results of nodes beyond a 
particular node. Consider branch 1. The 
receiving-end node voltage can be written as 
     V(2) = V(1) - I (1)  Z (1)        
Similarly for branch 2, 
     V(3) = V(2) - I (2)  Z (2)      
As the substation voltage V(1) is known, so if 
Z(1) is known, i.e. current of branch 1, it is easy 
to calculate V(2) from above eqn. 
 Once V(2) is known, it is easy to calculate 
V(3), if the current through branch 2 is known. 
Similarly, voltages of nodes 4, 5, ..., NB can 
easily be calculated if all the branch currents are 
known. Therefore, a generalised equation of 
receiving-end voltage, sending-end voltage, 
branch current and branch impedance is 
 V(m2) = V(m1) - I ( j j ) Z ( j j )     ....(i) 
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where j j is the branch number. 
     m2 = I R ( j j )            
     m1 = I S ( j j )            
Eqn. (i) can be evaluated for jj = 1, 2, ..., LN1 
(LN1 = NB - 1 = number of branches). Current 
through branch 1 is equal to the sum of the load 
currents of all the nodes beyond branch 1. 
Therefore, if it is possible to identify the nodes 
beyond all the branches, it is possible to compute 
all the branch currents. Identification of the 
nodes beyond all the branches is realised through 
an algorithm as explained in Section IV. 
The load current of node i is 

 
 ....(ii) 
Load currents are calculated iteratively. Initially, 
a flat voltage of all the nodes is assumed and load 
currents of all the nodes are computed. A 
detailed load flow calculation algorithm is 
described in Section V. 
Table 1: Calculation of Nodes beyond branch jj   
 
jj m1

= 
IS(jj

) 

m2
= 

IR(j
j) 

Nodes beyond branch 
jj 

N(
jj) 

1 1 2 2,3,19,4,23,20,5,24,2
1,6,25,22,7,26,8,27,9,
28,10,29,11,30,12,31,
13,32,14,33,15,16,17,
18 

32 

2 2 3 3,4,23,5,24,6,25,7,26,
8,27,9,28,10,29,11,30
,12,31,13,32,14,33,15
,16,17,18 

27 

3 3 4 4,5,6,7,26,8,27,9,28,1
0,29,11,30,12,31,13,3
2,14,33,15,16,17,18 

23 

4 4 5 5,6,7,26,8,27,9,28,10,
29,11,30,12,31,13,32,
14,33,15,16,17,18 

22 

5 5 6 6,7,26,8,27,9,28,10,2
9,11,30,12,31,13,32,1
4,33,15,16,17,18 

21 

6 6 7 7,8,9,10,11,12,13,14,
15,16,17,18 

12 

7 7 8 8,9,10,11,12,13,14,15
,16,17,18 

11 

8 8 9 9,10,11,12,13,14,15,1
6,17,18 

10 

9 9 10 10,11,12,13,14,15,16, 9 

17,18 

10 10 11 11,12,13,14,15,16,17,
18 

8 

11 11 12 12,13,14,15,16,17,18 7 
12 12 13 13,14,15,16,17,18 6 
13 13 14 14,15,16,17,18 5 
14 14 15 15,16,17,18 4 
15 15 16 16,17,18 3 
16 16 17 17,18 2 
17 17 18 18 1 
18 2 19 19,20,21,22 4 
19 19 20 20,21,22 3 
20 20 21 21,22 2 
21 21 22 22 1 
22 3 23 23,24,25 3 
23 23 24 24,25 2 
24 24 25 25 1 
25 6 26 26,27,28,29,30,31,32,

33 
8 

26 26 27 27,28,29,30,31,32,33 7 
27 27 28 28,29,30,31,32,33 6 
28 28 29 29,30,31,32,33 5 
29 29 30 30,31,32,33 4 
30 30 31 31,32,33 3 
31 31 32 32,33 2 
32 32 33 33 1 
 

IV. IDENTIFICATION OF NODES BEYOND ALL 

THE BRANCHES 

 For jj = 1 (first branch of Fig. 1 , Table 1, IR(jj) 
= IR(1) = 2; check whether IR(1) = IS(i) or not 
for i = 2, 3, 4, ..., LN1. It is seen that IR(1) = 
IS(2) = 2, IR(1) = IS(18) = 2; the corresponding 
receiving-end nodes are IR(2) = 3 and IR(6) = 
19.  
 Therefore, IE(1, 1) = 2, IE(1, 2) = 3 and IE(1, 
3) = 19. Note that there should not be any 
repetition of any node while identifying nodes 
beyond a particular branch [17], and this logic 
has been incorporated in the proposed algorithm. 
 From the above discussion, it is seen that node 
2 is connected to nodes 3 and 19. Similarly, the 
proposed logic will identify the nodes which are 
connected to nodes 3 and 19. Firstly, it will 
check whether node 3 appears in the left-hand 
column of Table 1 . It is seen that node 3 is 
connected to node 4. Therefore, IE(1, 4) = 4. 
Then it will check whether node 19 appears in 
the left-hand column of Table 1 . It is seen that 
the node 19 is connected to node 20. Therefore, 
IE(1, 5) = 20.  
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 From the above discussion, it is again seen that 
node 3 is connected to node 4 and node 19 is 
connected to node 20. Similarly, the proposed 
logic will check whether nodes 4 and 20 are 
connected to any other nodes. This process will 
continue unless all nodes are identified beyond 
branch 1. Table 1 shows the result of the coding 
implemented in MATLAB 7 for the calculation 
of nodes beyond branch jj. This will help to 
obtain load flow solution by summation of load 
currents of all the nodes beyond a particular 
branch. 
 The total current flowing through branch 1 is 
equal to the sum of the load currents of all nodes 
beyond branch 1.  
 Note that, if the receiving-end node of any 
branch in Fig. 1 is an end node of a particular 
lateral, the total current of this branch is equal to 
the load current of this node itself. 

V. ALGORITHM FOR LOAD FLOW 

COMPUTATION  

The complete algorithm for load-flow 
computation is shown below: 
Step 1 : Start 
Step 2 : Read line data and load data of the 
system. 
Step 3 : Read base values. 
Step 4 : Set ITMAX = 100. 
Step 5 : Set V(i,j) = 1.0 + j0.0 for i = 
1,2,3……TFL and j = 1,2,3……..TN(i). 
Step 6 : Set IT = 1. 
Step 7 : Set PL1(i,j) = PL(i,j) and QL1(i,j) = 
QL(i,j) for i=1,2,3……TFL and j=1,2,3…..TN. 
Step 8 : Using equation (ii) calculate IL(m2) for 
m2 = 2,3……..TN. 
Step 9 : Calculate I(i,jj) for i=1,2,…….TFL and 
jj = 1,2,……TN-1 where 

   
Step 10 : Compute V(i, j+1) = V(i, j) - I(i, jj)Z(i, 
jj) for i=1,2,3……TFL and j=1,2,3……..TN(i). 
Step 11 : Compute ΔVk(i, j) =  Vk-1(i, j) - Vk(i, j). 
Step 12 : Arrange ΔVk(i, j) in descending order. 
Step 13 : Get the highest value of ΔVk(i, j). 
Step 14 : If ΔVk(i, j) < 0.001 go to step 17 else 
go to step 15. 
Step 15 : IT = IT+1. 
Step 16 : If IT < ITMAX, go to step 7 else go to 
step 17. 
Step 17 : Display ‘SOLUTION CONVERGED’. 
Step 18 : Stop. 

VI. EXAMPLE 

To demonstrate the effectiveness of the 
proposed method, a 33-node radial distribution 
system has been selected. Input data for this 
33-node system is given in Table 2 [12 ]. Table 2 
also shows the results of votage (p.u.) for each 
node of this 33-node radial distribution network.   

VII. CONCLUSION 

A simple and efficient load-flow technique has 
been proposed for solving radial distribution 
networks. Herein this work, it is observed that 
the values of absolute voltage at each node, 
obtained by the proposed method, are more 
precise and accurate. In future, the proposed 
method will be used for the evaluation of 
voltages for other load models, in a way which 
will be more convergent.                                            
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APPENDIX.1. NOMENCLATURE 

 NB : Total number of the nodes 
 LN1 : Total number of the branch (LN1 = NB 
− 1) 
 jj : Branch number 
 m1 : Receiving end node 
 m2 : Sending end node 
 PL(i) : Real power load of ith node 
 QL(i) : Reactive power load of ith node 
 |V(i)| : Voltage magnitude of ith node 
 R(jj) : Resistance of the branch–jj 
 X(jj) : Reactance of the branch–jj 
 Z(jj) : Impedance of the branch–jj 
 I(jj) : Current flowing through branch–jj 
 IS(jj) : Sending end node of branch–jj 
 IR(jj) : Receiving end node of branch–jj 
 IL(i) : Load current of node-i 
 kV : Kilovolts 
 kW : Kilowatts 

kVAr : Amount of reactive power 
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Table 2: 33-BUS RADIAL DISTRIBUTION SYSTEM UNDER STUDY 

Branch 
no. (jj) 

Sending 
End IS(jj) 

Receiving 
End IR(jj) 

R(Ω) X(Ω) PL(kW) QL(kVAr) V(p.u.) 

1 1 2 0.0922 0.047 100 60 1 
2 2 3 0.493 0.2511 90 40 0.9972 
3 3 4 0.366 0.1864 120 80 0.9885 
4 4 5 0.3811 0.1941 60 30 0.9923 
5 5 6 0.819 0.707 60 20 0.9933 
6 6 7 0.1872 0.6188 200 100 0.9866 
7 7 8 1.7114 1.2351 200 100 0.9964 
8 8 9 1.03 0.74 60 20 0.9852 
9 9 10 1.044 0.74 60 20 0.9917 
10 10 11 0.1966 0.065 45 30 0.9921 
11 11 12 0.3744 0.1238 60 35 0.9988 
12 12 13 1.468 1.155 60 35 0.9978 
13 13 14 0.5416 0.7129 120 80 0.9906 
14 14 15 0.591 0.526 60 10 0.9970 
15 15 16 0.7463 0.545 60 20 0.9982 
16 16 17 1.289 1.721 60 20 0.9982 
17 17 18 0.732 0.574 90 40 0.9970 
18 2 19 0.164 0.1565 90 40 0.9994 
19 19 20 1.5042 1.3554 90 40 0.9995 
20 20 21 0.4095 0.4784 90 40 0.9962 
21 21 22 0.7089 0.9373 90 40 0.9991 
22 3 23 0.4512 0.3083 90 50 0.9994 
23 23 24 0.898 0.7091 420 200 0.9989 
24 24 25 0.896 0.7011 420 200 0.9983 
25 6 26 0.203 0.1034 60 25 0.9993 
26 26 27 0.2842 0.1447 60 25 0.9986 
27 27 28 1.059 0.9337 60 20 0.9982 
28 28 29 0.8042 0.7006 120 70 0.9930 
29 29 30 0.5075 0.2585 500 600 0.9962 
30 30 31 0.9744 0.963 150 70 0.9987 
31 31 32 0.3105 0.3619 210 100 0.9974 
32 32 33 0.341 0.5302 60 40 0.9993 

 
 


