

COMPUTER SCIENCE RESEARCH IN ARTIFICIAL INTELLIGENCE

M PUJITHA 1, PAMBALA NAGESWARA RAO 2, B LAXMIKANTHA 3 4.DHARAVATH BHADRU, 5.SAMYA BADAVATH Assistant Professor, Department of Computer Engineering,

Ellenki college of Engineering and Technonlogy, patelguda (vi), near BHEL ameenpur (m), Sangareddy Dist. Telangana 502319

Abstract—This paper presents a bibliometric overview of the research carried out between 1990 and 2014 in computer science with a focus on artificial intelligence. The work analyses all the journals available in Web of Science during this period and presents their publication and citation results. The study also considers the most cited articles in this area during the last twenty-five years. IEEE Journals obtain the most remarkable results publishing more than half of the most cited papers.

Index Terms— Bibliometrics, Web of Science, journals, citations.

I. INTRODUCTION

Artificial intelligence is a research area that studies how systems can think artificially or in related ways. It represents an important part of computer science. In the Web of Science (WoS) database there is one specific research category of the

251 categories strictly dedicated to this field, "Computer Science, Artificial Intelligence". This area is becoming very popular due to the strong development of computers and technology. In order to assess the publications in this field, we can use bibliometrics which analyses the bibliographic material quantitatively [4]. In the literature, there are many articles that have developed a bibliometric analysis of a research field including management [18], economics [3,5], innovation, [8], fuzzy research [16], aggregation systems [7,23], grey systems [22] and computational intelligence [21]. Focusing on computer science, there are also some bibliometric studies. For example, Guan and Ma [12] developed

a comparative analysis of the research performance, Tsai [20] studied the citation impact of computer science journals, and Feitelson and Yovel [9] analysed authors through the CiteSeer data. Some other studies have analysed computer science in specific regions including India [19], Brazil [15], Spain [14], Argentina [11]and Malaysia [2].

The aim of this paper is to analyse the artificial intelligence section of computer science. For doing so, we follow the WoS database which classifies a group of journals in this category. Thus, we study all the articles published in these journals between 1990 and 2014. Note that some journals may partially publish material in this discipline. However, our focus is on analyse the journals strictly dedicated to this area and identifying the most cited papers.

This paper is organized as follows. Section II briefly reviews the bibliometric methodology used in the paper. Section III, presents the results and Section IV summarizes the main findings and conclusions of the paper.

II. METHODS

WoS is usually regarded as the most influential database for scientific research. Usually, those journals included here are recognized of those with the highest quality. WoS contains 15.000 journals than more and 50.000.000 documents. Currently, it continues growing, especially with the newest expansion produced by the creation of the Emerging Sources Citation Index that will include journals of high quality that need a period of evaluation before receiving an impact factor although already available in the database. The scientific material is divided in 251 research categories. Computer science encompasses seven of these categories and one of them is focused on Artificial Intelligence.

In order to analyze the data, this study uses several bibliometric indicators [17]. Particularly, we use the total number of publications and citations, the h-index [13], the cites per paper, and the number of papers among the thirty most cited in the field between 1990 and 2014. Note that the h-index is a modern index that tries to integrate publications with citations. In summary, if a set of papers have an h-index of X, it means that X papers of the total set, have received X or more citations. In general, this index works quite well although it is not able to consider some exceptional situations. For example, if an author has five papers and two of them have one thousand citations and the other three zero, his hindex is two. However, if another author have five papers with five citations each, he has an h-index of five. Here, the second author gets a better result although it is clear that the first one is more influential. Due to this, some other measures have appeared in the literature including the g-index [6] and the hgindex [1].

The search process looks for the published documents in the WoS category of Computer Science, Artificial Intelligence between 1990 and 2014. Only articles, reviews, letters and notes are considered. The main reason is that the other types of documents are usually not scientific material. All the journals are ranked according to the total number of citations. However, WoS does not distinguish between the sources that give the citations. From a general perspective, this should not bring important deviations but it is worth

R	Nam	тс	TP	Н	TC/TP	Y	V	T30
	e							
1	IEEETrans.PatternAnalysisandMachineIntelligence	276.42	3.98	222	69,37	1990	12	9
2	IEEETrans.ImageProcessing	8 162.99 3	5 4.89 4	167	33,30	1992	1	3
3	IEEETrans.NeuralNetworksandLearningSystems	129.59 8	3.70 5	137	34,98	1991	2	3
4	PatternRecognition	115.20 9	5.63 0	119	20,46	1990	23	-
5	Int.J.ComputerVision	97.525	1.63 9	138	59,50	1990	4	3
6	NeuralComputation	88.807	2.40 5	129	36,93	1992	4	2
7	ExpertSystemswithApplications	85.240	9.16 5	74	9,30	1991	2	-
8	NeuralNetworks	75.163	2.98 1	113	25,21	1990	3	1
9	MachineLearning	72.098	1.19	105	60,13	1990	5	3

INTER	NATIONAL JOURNAL OF CURRENT ENGINEERING A	ND SCIE	NTIFIC	RESI	EARCH	(IJCES	5 R)	
10	IEEETrans.FuzzySystems	66.695	9 1.72	116	38,73	1994	2	-
11	PatternRecognitionLetters	64.250	2 4.86	85	13,22	1990	11	1
12	ArtificialIntelligence	63.072	0 1.97	113	31,87	1990	41	-
13	ChemometricsandIntelligentLaboratorySystems	52.604	9 2.83	94	18,55	1990	7	-
14	Neurocomputing	49.704	6 6.43	65	7,72	1992	4	-
15	ComputerVisionandImageUnderstanding	48.737	6 1.95	93	24,89	1991	53	1
16	IEEETrans.KnowledgeandDataEngineering	46.604	8 2.65	91	17,59	1992	4	-
17	IEEETrans.onEvolutionaryComputation	45.936	0 786	95	58,44	1999	3	2
18	ImageandVisionComputing	39.830	2.35	78	16,92	1990	8	-
19	J.MachineLearningResearch	36.363	4 1.22	80	29,81	2001	1	1
20	DecisionSupportSystems	33.782	0 2.49 3	68	13,55	1991	7	-
21	RoboticsandAutonomousSystems	23.919	3 1.91 4	60	12,50	1994	13	-
22	J.ArtificialIntelligenceResearch	19.434	4 777	62	25,01	199 5	3	-
23	EngineeringApplicationsofArtificialIntelligence	18.502	2.18 9	47	8,45	1992	5	-
24 25	EvolutionaryComputation Int.J.ApproximateReasoning	18.288 17.234	502 1.34	58 53	36,43 12,83	1993 1993	1 8	-
26	ArtificialIntelligenceinMedicine	15.890	3 1.18 9	48	13,36	1992	4	-
27	DataMiningandKnowledgeDiscovery	15.833	497	55	31,86	1997	1	1
28	Knowledge-BasedSystems	15.608	2.04 4	41	7,64	1991	4	-
29	Mechatronics	15.429	1.72 1	43	8,97	1992	2	-
30	AutonomousRobots	15.093	806	60	18,73	1996	3	-
31	Int.J.IntelligentSystems	14.781	1.47 0	51	10,06	1990	5	-
32	Data&KnowledgeEngineering	14.347	1.28 8	51	11,14	1994	12	-
33	Network-ComputationinNeuralSystems	14.145	603	59	23,46	1990	1	-
34	J.IntelligentManufacturing	11.990	1.48 9	41	8,05	1990	1	-
35	IEEEIntelligentSystems	11.496	1.41 6	49	8,12	2001	16	-
36	AIMagazine	10.668	969	49	11,01	1990	11	-
37	ComputationalLinguistics	10.492	741	48	14,16	199 5	21	-
38	J.MathematicalImagingandVision	10.407	888	44	11,72	1996	6	-
39	SoftComputing	9.525	1.58 8	35	6,00	2002	7	-
40	J.Intelligent&RoboticSystems	9.495	1.78 2	31	5,33	1990	3	-
41	Int.J.UncertaintyFuzzinessandKnowledgeBasedSystem s	9.363	1.02 8	42	9,11	1995	3	-
42	ComputerSpeechandLanguage	8.260	612	40	13,50	1994	8	-
43	ArtificialIntelligenceReview	8.170	713	37	11,46	1990	4	-
44	Int.J.PatternRecognitionandArtificialIntelligence	7.757	1.43 9	33	5,39	1995	9	-

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING	AND SCIE	NTIFIC	RESI	EARCH	(IJCES	SR)	
45 NeuralProcessingLetters	7.490	802	32	9,34	1994	1	-
46 KnowledgeEngineeringReview	7.448	459	35	16,23	199 4	9	-
47 AppliedIntelligence	7.074	1.01 1	34	7,00	1993	3	-
48 NeuralComputing&Applications	7.056	1.99 0	28	3,55	1995	3	-
49 ArtificialLife	6.442	415	36	15,52	1998	4	-
50 AppliedArtificialIntelligence	6.336	912	37	6,95	1991	5	-
51 AnnalsofMathematicsandArtificialIntelligence	6.147	874	34	7,03	1995		-
52 J.AutomatedReasoning	5.644	692	34	8,16	1993	10	-
53 AdvancedEngineeringInformatics	5.413	539	31	10,04	2002		-
54 Int.J.NeuralSystems	5.259	562	31	9,36	1992	3	-
55 SIAMJ.ImagingSciences	5.258	398	26	13,21	200 8	1	-
56 AIEdam-ArtificialIntell.Engin.DesignAnalysisManuf.	5.119	664	30	7,71	1993	7	-
57 AdaptiveBehavior	5.051	494	36	10,22	1994	3	-
58 AutonomousAgentsandMulti-AgentSystems	5.026	398	31	12,63	200 0	3	-
59 PatternAnalysisandApplications	4.699	569	32	8,26	1998	1	-
60 J.IntelligentInformationSystems	4.590	537	29	8,55	1998		-
61ComputationalIntelligence	4.50	596	31	7,56	1995	11	-
62AICommunications	4 4.29	527	25	8,14	1994	7	-
	1						
63J.WebSemantics	4.12 9	290	30	14,24	2005	3	-
64InformationFusion	3.52 9	395	30	8,93	2006	7	-
65Int.J.InformationTechnology&DecisionMaking	3.24 6	532	24	6,10	2004	3	-
66J.Experimental&TheoreticalArtificialIntelligence	3.19 6	549	25	5,82	1993	5	-
67J.Intelligent&FuzzySystems	3.15 1	1.30 3	21	2,42	1995	3	-
68IEEEComputationalIntelligenceMagazine	3.06 8	260	25	11,80	2006	1	-
69Int.J.SoftwareEngineeringandKnowledgeEngineering	2.97 9	963	23	3,09	1991	1	-
70ExpertSystems	2.66 2	771	22	3,45	1994	11	-
71MindsandMachines	2.60 1	523	22	4,97	1992	2	-
72ConnectionScience	2.54 6	308	23	8,27	1998		-
73Int.J.AppliedMathematicsandComputerScience	2.08 6	518	18	4,03	2003	13	-
74Int.J.ComputationalIntelligenceSystems	1.69 0	592	18	2,85	2008	1	-
75CognitiveSystemsResearch	1.64 4	289	17	5,69	200 5	6	-
76FuzzyOptimizationandDecisionMaking	1.46 4	193	20	7,59	2007	6	-
77Int.J.ArtificialIntelligenceTools	1.28 5	557	14	2,31	2005		-
78Int.J.DocumentAnalysisandRecognition	1.22 0	221	17	5,52	2006		-
79IntelligentDataAnalysis	1.18 4	502	14	2,36	2005	9	-
80Int.J.FuzzySystems	1.15	348	14	3,32	2007	9	-

	4					
81ACMTrans.IntelligentSystemsandTechnology	1.10	259	7	4,28	2010 1	-
	8					
82Int.J.Bio-InspiredComputation	1.04	204	15	5,10	2009 1	-
	0					
83ComputingandInformatics	1.00	663	11	1,52	200 20	-
	8				1	
84IntelligentAutomationandSoftComputing	992	768	13	1,29	1998 4	-
85ACMTrans.AutonomousandAdaptiveSystems	901	190	13	4,74	2006 1	-
86Int.J.MachineLearningandCybernetics	888	206	13	4,31	2011 2	-
87J.Multiple-ValuedLogicandSoftComputing	887	455	12	1,95	2004 10	-
88Int.J.SemanticWebandInformationSystems	857	127	13	6,75	2006 2	-
89J.Real-TimeImageProcessing	837	286	13	2,93	2006 1	-
90CognitiveComputation	808	280	13	2,89	2009 1	-
91IEEETrans.AutonomousMentalDevelopment	803	154	13	5,21	2009 1	-
92AdvancesinElectricalandComputerEngineering	766	481	9	1,59	2007 7	-
93NeuralNetworkWorld	763	429	10	1,78	2005 15	-
94GeneticProgrammingandEvolvableMachines	760	160	13	4,75	2007 8	-
95IET ComputerVision	704	293	11	2,40	2007 1	-
96TurkishJ.ElectricalEngineeringandComputerSciences	618	589	8	1,05	2008 16	-
97IEEETrans.ComputationalIntelligenceandAlinGames	613	162	12	3,78	2009 1	-
98J.AmbientIntelligenceandSmartEnvironments	569	238	11	2,39	2009 1	-
99NaturalComputing	527	296	9	1,78	2010 9	-
100WileyInterdis.Reviews-DataMiningKnowledgeDisc.	496	137	11	3,62	2011 1	-
101J.AppliedLogic	310	167	9	1,86	2009 7	-
102SwarmIntelligence	226	67	8	3,37	2010 4	-
103NaturalLanguageEngineering	172	134	7	1,28	2009 15	-
104TraitementduSignal	61	210	3	0,29	2007 24	-
105MemeticComputing	61	74	4	0,82	2012 4	-
106IETBiometrics	59	79	4	0,75	2012 1	-
\mathbf{b} breviations: $\mathbf{R} = \mathbf{R}$ and \mathbf{R} according to \mathbf{TC} . The IEF	E Transac	tions Id	ourna	ls obtai	n the most	

Abbreviations: R = Ranking according to TC; TC = Total citations; TP = Total papers; TC/TP = Average citations per paper; Y= Year; V = Volume; IF = Impact factor; IF5 = 5-year impact factor; T50 = Number of papers among the 50 most cited of the category; T200 = Number of papers among the 200 most cited in all fields of computer science since 1990; T200 < 1990 = Number of papers among the 200 most cited in all fields of computer science before 1990; GR = Global ranking considering all the computer science journals.

III. RESULTS

Currently, there are 106 journals in WoS in the category of Computer Science, Artificial Intelligence. However, note that this number is constantly changing, especially now with the introduction of the Emerging Sources Citation Index. Table 1 presents the journals ranked according to their number of citations obtained between 1990 and 2014.

The IEEE Transactions Journals obtain the most remarkable results [10]. Particularly, the IEEE Transactions

on Pattern Analysis and Machine Intelligence, the IEEE Transaction on Image Processing and the IEEE Transactions on Neural Networks and Learning Systems, obtain the first three positions. Note that some other journals obtain better results according to other indicators including the International Journal of Computer Vision, Machine Learning and the IEEE Transactions on Evolutionary Computation.

Next, let us look into the most cited papers in this field over the last twenty-five years. Table 2 presents the thirty most cited papers in Computer Science, Artificial Intelligence

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

Table 2. 1	Most cited pa	pers in Con	nputer Science: Artificial Intelligence		
1	IJCV	10356	Distinctiveimagefeaturesfromscale-invariant	Lowe, DG	2004
2	ML	7192	keypoints Randomforests	Breiman,L	2001
2	ML	6494	Support-VectorNetworks	Cortes,C;VapnikV	1995
Ū			Afastandelitistmultiobjectivegeneticalgorithm:	Deb,K;Pratap,A;Agarwal,S;e	
4	TRECO	6035		t al.	2002
	ML	5354	NSGA-II Baggingpredictors	Breiman,L	1996
5	TPA	4430	Amethodforregistrationof3-Dshapes	Besl,PJ; Mckay,ND	1992
6			AtutorialonSupportVectorMachinesforpattern	-	
7	DMKD	4262	recognition	Burges,CJC	1998
			Scale-SpaceandEdge-Detectionusinganisotropic	Perona,P; MalikJ	1990
8	TPA	4251			
			diffusion	Wang,Z;Bovik,AC;Sheikh,HR	
9	TIP	4032		;et al.	2004
			Imagequalityassessment:Fromerrorvisibilitytos tructuralsimilarity	Belhumeur,PN;Hespanha,J	1997
			Eigenfacesvs.Fisherfaces:Recognitionusingclass	P;Kriegman,DJ;etal.	1007
10	TPA	3890			
			specificlinearprojection		
11	NC	3487	Aninformationmaximizationapproachtoblind	Bell,AJ;Sejnowski,TJ	1995
	TDA		separationandblinddeconvolution		0000
12	TPA TIP	3306 3239	Normalizedcutsandimagesegmentation Activecontourswithoutedges	Shi, JB; Malik,J Chan, TF;Vese, LA	2000 2001
13			Meanshift:Arobustapproachtowardfeaturespaceanal		
14	TPA	2972	ysis	Comaniciu,D;Meer,P	2002
15	CVIU	2841	Activeshapemodels-Theirtrainingandapplication	Cootes,TF;TaylorCJ;	1995
15	0110	2041		CooperDH;etal.	
16	IJCV	2818	Robustreal-timefacedetection	Viola, P; Jones,MJ	2004
17	TPA	2700	Amodelofsaliency-basedvisualattentionforrapid	Itti,L;Koch,C;Niebur,E;etal.	1998
			sceneanalysis		
18	TRECO	2585	Theparticleswarm-Explosion, stability, and	Clerc,M;Kennedy,J	2002
			convergenceinamultidimensionalcomplexspace		
19	JMLR	2581	LatentDirichletallocation		2003
-	-			Blei,DM;Ng,AY;Jordan, MI;	
				et al.	
20			Nonlinearcomponentanalysisasakerneleigenvalue	Scholkopf,B;Smola,A;M	1000
	NC	2534	problem	uller,KR;etal.	1998
21			Trainingfeedforwardnetworkswiththemarquardt		
21	TNN	2407		Hagan,MT;Menhaj,MB	1994
22	PRL	2396	algorithm AnintroductiontoROCanalysis	Fawcett, T	2006
23	TPA	2336	Aflexiblenewtechniqueforcameracalibration	Zhang,ZY	2000
24	TIP	2312	Securespreadspectrumwatermarkingformultimedia	Cox,IJ;Kilian,J;Leighton,	1997
24	111	2012	Securespreadspectrumwatermarkingtormuttimedia	FT;etal.	1997
25		0000	Multiresolutiongray-scaleandrotationinvariant	Ojala,T;Pietikainen,M;M	2002
	TPA	2296	textureclassificationwithlocalbinarypatterns	aenpaa,T; etal.	2002
26	IJCV	2292	Colorindexing	Swain,MJ;Ballard,DH	1991
27	TPA	2265	Oncombiningclassifiers		1998
21		2200		Kittler,J;Hatef,M;Duin,RP	1000
28	NN	2208		W;et al.	
29	TNN	2199			

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

Independent component analysis: algorithms and applications

TNN 2120 Fastandrobustfixed-pointalgorithmsforindependentcomponentanalysis

30 TNN 2120 Acompanisonometriousion Abbreviations: R = Rank; TC = Total citations; IJCV = Int. J. Computer Vision; ML = MachineLearning; TRECO = IEEE Trans. Evolutionary Computation; IEEE Trans. Pattern Analysis and Machine Intelligence; DMKD = Data Mining and Knowledge Discovery; TIP

= IEEE Trans. Image Processing; NC = Neural Computation; CVIU = Computer Vision and Image Understanding; JMLR = J. Machine Learning Research; TNN = IEEE Trans. Neural Networks; PRL = Pattern Recognition Letters.

The most cited article of the last twenty-five years is published in the International Journal of Computer Vision by Lowe and has received more than 10.000 citations. The IEEE Transactions on Pattern Analysis and Machine Intelligence has nine papers in the Top 30. All the papers in the list have received more than 2.000 citations.

IV. CONCLUSION

This study has presented an overview of the leading trends in the field of artificial intelligence in computer science. The results are based on WoS and clearly show the relevance of the IEEE journals as the leaders of the field. However, there are many other important journals in this area. Depending on the bibliometric indicator considered, some journals may obtain better results than others. This work has ranked the journals according to the total number of citations but it also presents other indicators in order to give a more general perspective of the characteristics of each journal. The current trend is that more journals are entering WoS, especially motivated by the strong growth of researchers worldwide that needs a higher supply of journals.

The paper has also considered the most cited papers in this area between 1990 and 2014. The IEEE Transactions on Pattern Analysis and Machine Intelligence is the most influential journal with nine papers in the Top 30 and is the most cited journal in the ranking.

In future research, we will look into other issues including leading authors, institutions and countries. Moreover, we will also consider other computer science categories including

information systems, interdisciplinary applications and cybernetics. REFERENCES

[1] S. Alonso, F.J. Cabrerizo, E. Herrera-Viedma, F. Herrera, H-index: A review focused on its variants, computation and standarization for different scientific fields. Journal of Informetrics, 3:273-289, 2009.

[2] A. Bakri, P. Willet, Computer science research in Malaysia: A bibliometric analysis. Aslib Proceedings, 63:321-335, 2011.

[3] C. Bonilla, J.M. Merigó, C. Torres-Abad, Economics in Latin America: A bibliometric analysis. Scientometrics, 105:1239-1252, 2015.

[4] R.N. Broadus, Toward a definition of "Bibliometrics". Scientometrics, 12:373-379, 1987.

[5] T. Coupé, Revealed performances: Worldwide rankings of economists and economics departments, 1990–2000. Journal of the European Economic Association, 1:1309-1345, 2003.

[6] L. Egghe, Theory and practice of the gindex. Scientometrics, 69:131-152, 2006.

[7] A. Emrouznejad, M. Marra, Ordered weighted averaging operators 1988–2014. A citation based literature survey. International Journal of Intelligent Systems, 29:994-1014, 2014.

[8] J. Fagerberg, M. Fosaas, K. Sapprasert, Innovation: Exploring the knowledge base. Research Policy, 41:1132-1153, 2012.

[9] D.G. Feitelson, U. Yovel, Predictive ranking of computer scientists using CiteSeer data. Journal of Documentation, 60:44-61, 2004.

[10] F. Franceschini, D. Maisano, Sub-field normalization of the IEEE scientific journals based on their connection with Technical Societies. Journal of Informetrics, 8:508-533, 2014.

[11] D. Godoy, A. Zunino, C. Mateos, Publication practices in the Argentinian computer science community: a bibliometric perspective. Scientometrics, 102:1795-1814, 2015.

[12] J.C. Guan and N. Ma, A comparative study of research performance in computer science.Scientometrics, 61:339-359, 2004.

[13] J.E. Hirsch, An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102:16569-16572, 2005.

[14] A. Ibáñez, P. Larrañaga, C. Bielza, Cluster methods for assessing research performance: exploring Spanish computer science. Scientometrics, 97:571-600, 2013.

[15] H. Lima, T.H.P. Silva, M.M. Moro, R.L.T. Santos, W. MeiraJr, A.H.F. Laender, Assessing the profile of top Brazilian computer science researchers. Scientometrics, 103:879-896, 2015.

[16] J.M. Merigó, A.M. Gil-Lafuente, R.R. Yager, An overview of fuzzy research with bibliometric indicators. Applied Soft Computing, 27: 420-433, 2015.

[17] J.M. Merigó, A. Mas-Tur, N. Roig-Tierno, D. Ribeiro-Soriano, A bibliometric overview of the Journal of Business Research between 1973 and 2014. Journal of Business Research, 68: 2645-2653, 2015.

[18] P.M. Podsakoff, S.B. MacKenzie, N.P. Podsakoff, D.G. Bachrach, Scholarly influence in the field of management: A bibliometric analysis of the determinants of university and author impact in the management literature in the past quarter century. Journal of Management, 34:641-720, 2008.

[19] V.K. Singh, A. Uddin, D. Pinto, Computer science research: the top

100 institutions in India and in the world.Scientometrics, 104: 529-553, 2015.

[20] C.F. Tsai, Citation impact analysis of top ranked computer science journals and their rankings. Journal of Informetrics, 8:318-328, 2014

[21] N.J. Van Eck, L. Waltman, Bibliometric mapping of the computational intelligence field, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15:625-645, 2007.

[22] M.S. Yin, Fifteen years of grey system theory research: A historical review and bibliometric analysis, Expert Systems with Applications, 40:2767-2775, 2013.

[23] D. Yu, A scientometrics review on aggregation operator research.

Scientometrics, 105:115-133, 2015.