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Abstract 
With the rapid growth of social media, the 
number of images being uploaded to the 
internet is exploding. Massive quantities of 
images are shared through multi-platform 
services such as Snapchat, Instagram, 
Facebook and WhatsApp. Recent studies 
estimate that over 1.8 billion photos are 
uploaded every day. However, for the most 
part, applications that make use of this vast 
data have yet to emerge. Most current image 
processing applications, designed for small-
scale, local computation, do not scale well to 
web-sized problems with their large 
requirements for computational resources 
and storage. The emergence of processing 
frameworks such as the Hadoop-MapReduce 
platform addresses the problem of providing 
a system for computationally intensive data 
processing and distributed storage. 
 
Keywords: Image Processing, Parallel and 
distributed processing, Mapreduce, Hadoop, 
HIPI. 
 

I. INTRODUCTION   
With the rapid growth of social media, the 
number of images being uploaded to the internet 
is exploding. Massive quantities of images are 
shared through multi-platform services such as 
Snapchat, Instagram, Facebook and WhatsApp. 
Recent studies estimate that over 1.8 billion 
photos are uploaded every day. However, for 
the most part, applications that make use of this 
vast data have yet to emerge. Most current 
image processing applications, designed for 
small-scale, local computation, do not scale well 
to web-sized problems with their large 
requirements for computational resources and 

storage. The emergence of processing 
frameworks such as the Hadoop-MapReduce 
platform addresses the problem of providing a 
system for computationally intensive data 
processing and distributed storage. However, to 
learn the technical complexities of developing 
useful applications using Hadoop requires a 
large investment of time and experience on the 
part of the developer. As such, the pool of 
researchers and programmers with the varied 
skills to develop applications that can use large 
sets of images has been limited. When 
considering operations such as face detection, 
image classification and other types of 
processing on images, there are limits on what 
can be done to improve performance of single 
computers to make them able to process 
information at the scale of social media. 
Therefore, the advantages of parallel distributed 
processing of a large image dataset by using the 
computational resources of a cloud computing 
environment should be considered. In addition, 
if computational resources can be secured easily 
and relatively inexpensively, then cloud 
computing is suitable for handling large image 
data sets at very low cost and increased 
performance.  In this information world there is 
enormous amount of data flow between various 
Medias at very high rate. This data is 
categorized as "Big Data". Most of this 
generated data are images and videos. 

Big data analysis requires extensible computing 
power and practiced data mining statistics, 
machine learning, and pattern recognition 
capabilities. It is exaggerative in image 
processing domain since the video and image 
processing algorithms become more and more 
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complicated, which demands even more power 
in computation. Some of these image processing 
requires even real-time processing capability. It 
is essential to create a domain specific cloud for 
image processing research in order think these 
challenging requirements. To fill the gap 
between more complicated modern architectures 
and highly emerging image processing 
algorithms for big data, our image processing 
with cloud project aims to produce a high-
productivity and high-performance image 
processing research environment integrated 
within a cloud computing infrastructure. This 
proposal aims to combine cloud computing and 
big data analysis technology to provide image 
processing cloud infrastructure and big data 
processing engine to satisfy the needs. Thus it is 
a great challenge not only to store and manage 
the large volume of data, but also provide 
solution to improve performance and scalability.  

 
II. RELATED WORK  

With the rapid usage increase of online photo 
storage and social media on sites like Facebook, 
Twitter and Picasa, more image data is available 
than ever before, and is growing every day. 
Every minute 27,800 photos are uploaded to 
Instagram, while Facebook receives 208,300 
photos over the same time frame. This alone 
provides a source of image data that can scale 
into the billions. The explosion of available 
images on social media has motivated image 
processing research and application 
development that can take advantage of very 
large image data stores. Existing case study 
mostly rely on classifying and clustering 
billions of regular images using MapReduce. It 
describes an image pre-processing technique for 
use in a sliding-window approach for object 
recognition. Some of the limitations of the 
MapReduce model when dealing with high-
speed video encoding, namely its dependence 
on the NameNode as a single point of failure, 
and the difficulties inherent in generalizing the 
framework to suit particular issues. It proposes 
an alternate optimized implementation for 
providing cloud-based IaaS (Infrastructure as a 
Service) solutions. Lv et.al [1] describes using 
the k-means algorithm in conjunction with 
MapReduce and satellite/aerial photographs in 
order to find different elements based on their 
color. Zhang et.al [2] presents methods used for 
processing sequences of microscope images of 

live cells. The images are relatively small 
(512x512, 16-bit pixels) stored in 90 MB 
folders, the authors encountered difficulties 
regarding fitting into Hadoop DFS blocks which 
were solved by custom Input-Format, Input-
Split and Record-Reader classes. Powell et.al 
[3] describes how NASA handles image 
processing of celestial images captured by the 
Mars Orbiter and rovers. Clear and concise 
descriptions are provided about the 
segmentation of giga-pixel images into tiles, 
how the tiles are processed and how the image 
processing framework handles scaling and 
works with the distributed processing. 
Wang,Yinhai and McCleary[4] discuss 
speeding up the analysis of tissue microarray 
images by substituting human expert analysis 
for automated processing algorithms. While the 
images were gigapixel-sized, the content was 
easily segmented and there was no need to 
analyze all of an image at once. The work was 
all done on a specially-built high performance 
computing platform using the Hadoop 
framework.  
Hossein Kardan Moghaddam proposed 
MapReduce as a distributed data processing 
model using open source Hadoop framework 
for manipulating large volume of data. Muneto 
Yamamoto et al. [5] suggested methods of 
parallel image database processing with 
mapreduce and Hadoop streaming.  

III. PARALLEL APPROACHES FOR 
DATA PROCESSING  

A. MAP REDUCE  
Map reduce is a framework for distributed 
parallel processing of large image database 
[8]..Map reduce model is having many different 
variation with different technology and 
framework .Google ,Apache Hadoop ,HIPI, 
Microsoft SCOPE, Apache Pig, and Apache 
Hive all these have their own customized map 
reduce implementation. 

1) Hadoop Mapreduce: System 
Architecture  

Hadoop is an open source, distributed, scalable 
java based implementation which follows 
Google’s MapReduce concept [9.] Hadoop is 
framework which is having its own distributed 
file storage system which is Hadoop Distributed 
File System (HDFS) and its own computational 
paradigm known as Map reduce. 
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Fig.1 Hadoop MapReduce Paradigm [8] 
 
While processing Data through Hadoop Input 
and output is always given through HDFS 
Mapreduce is having two main elements namely 
JobTracker and TaskTracker and Two functions 
namely Map and Reduce. HDFS is having 2 
main elements namely Name node and Data 
node 

A) JobTracker manage resources of 
distributed system and manage job 
scheduling [8].  

B) TaskTracker accepts task and returns the 
results after executing tasks received by 
JobTracker.  

C) Name node is a master server that 
manages the namespace and access to files 
by client’s Name and executes file 
operations, such as opening, closing, and 
renaming files and directories. It also 
determines the mapping of blocks to Data 
Nodes [8]. 

D) DataNodes manage the storage that is 
attached to the nodes on which they run 
and perform block creation, deletion, and 
replication[8] .It is a place where 
execution of task take place.  

E) Secondary NameNode is a helper to the 
primary NameNode responsible for 
supporting periodic checkpoints of the 
HDFS metadata[8].It is especially useful 
in case of primary name node failure  

F) Map task take multiple input key- value 
pairs <k,v> and generate multiple <k’,v’> 
intermediate pairs.  

 
 
 
 
 
 
 
 
 
Fig 2 working of Map and reduce phase [8] 

G) Reduce phase take list of input<k’, list 
v’> and give final summarized output.  

H) After Map task shuffle task is performed 
on intermediate values to efficiently 
aggregate different pairs and to save 
network bandwidth.  

2) HADOOP IMAGE PROCESSING 
INTERFACE (HIPI) 
HIPI is an image processing library designed to 
be used with the Apache Hadoop Mapreduce 
parallel programming framework [5]. HIPI 
facilitates efficient and high-throughput image 
processing with MapReduce style parallel 
programs typically executed on a cluster . It is 
flexible enough to withstand continual changes 
and improvements within Hadoop’s Mapreduce 
system. The goal of HIPI is to create a tool that 
will make development of large-scale image 
processing and vision projects extremely 
accessible . 
Primary objective of HIPI are as below: 

1) Provide an open source framework over 
Hadoop MapReduce for developing 
large-scale image applications [5].  

 
 
 
 
 
 
 
 
Fig 3 Organization of Mapreduce in HIPI 

2) Provide the ability to flexibly store 
images in various Hadoop file formats .  

3) Provide interoperability between various 
image processing libraries [5].  

4) Store images efficiently for use in 
MapReduce applications and simple 
filtering of a set of images .  

5) HIPI will set up applications so that they 
are highly parallelized and balanced so 
that users do not have to worry about 
such details . 

Working of HIPI in MapReduce 
environment is as follow: 

1) Input to the HIPI program is given in the 
form of HIPI Image Bundle (HIB).HIB 
is collection of images in variety of file 
format which is stored as a single file on 
the HDFS .  

2) HIB is given to culling phase, which is 
new in HIPI. Main goal of culling step is 
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to filter the images in a HIB based on a 
variety of user-defined conditions like 
spatial resolution or criteria related to 
the image metadata. This functionality is 
achieved through the CullMapper class .  

3) Images survive from cull step are given 
to map function to generate intermediate 
key value pairs .  

4) Mapping output is shuffled to minimize 
network bandwidth usage and pre 
aggregate key value pairs .  

5) Reduce phase will generate summarized 
data in the form of one key with multiple 
values pair .  

The Hadoop Image Processing Framework is 
intended to provide users with an accessible, 
easy-to-use tool for developing large-scale 
image processing applications. 
The main goals of the Hadoop Image 
Processing Framework are: 

 Provide an open source framework over 
Hadoop MapReduce for developing 
large-scale image applications. 

 Provide the ability to flexibly store 
images in various Hadoop file formats. 

 Present users with an intuitive 
application programming interface for 
image-based operations which is highly 
parallelized and balanced, but which 
hides the technical details of Hadoop 
MapReduce. 

 Allow interoperability between various 
image processing libraries. 

Downloading and storing image data  
Step 1: Input a URL List. 
 Initially users input a file containing URLs of 
images to download. The input list should be a 
text file with one image URL per line. The list 
can be generated by hand, extracted from a 
database or a provided by a search. The 
framework provides an extendable ripper 
module for extracting URLs from Flickr and 
Google image searches and from SQL 
databases. In addition to the list the user selects 
the type of image bundle to be generated (e.g. 
HAR, sequence or map). System divides the 
URLs for download across the available 
processing nodes for maximum efficiency and 
parallelism. The URL list is split into several 
map tasks of equal size across the nodes. Each 
node map task generates several image bundles 
appropriate to the selected input list, containing 
all of the image URLs to download. In the 

reduce phase, the Reducer will merge these 
image bundles into a large image bundle. 
Step 2: Split URLs across nodes.  
From the input file containing the list of image 
URLs and the type of file to be generated, the 
task of downloading images across the all the 
nodes in the cluster is equally distributed. The 
nodes are efficiently managed so that no 
memory overflow can occur even for terabytes 
of images downloaded in a single map task. 
This allows maximum downloading 
parallelization. Image URLs are distributed 
among all available processing nodes, and each 
map task begins downloading its respective 
image set. 
Step 3: Download image data from URLs.  
For every URL retrieved in the map task, a 
connection is established according to the 
appropriate transfer protocol (e.g. FTP, 
HTTP,HTTPS, etc.). Once connected, the file 
type is checked. Valid images are assigned to 
InputStreams associated with the connection. 
From these InputStreams, new HImage objects 
are generated and the images to the image 
bundle are added. The HImage class holds the 
image data and provides an interface for the 
user’s manipulation of image and image header 
data. The HImage class also provides 
interoperability between various image data 
types (e.g. BufferedImage, Mat, etc.). 
Step 4: Store images in an image bundle. 
Once an HImage object is received, it can be 
added to the image bundle simply by passing 
the HImage object to the append Image  
method. Each map task generates a number of 
image bundles depending on the image list. In 
the reduce phase, all of these image bundles are 
merged into one large bundle. 
Processing image bundle using MapReduce. 
Hadoop MapReduce program handles input and 
output data very efficiently, but their native data 
exchange formats are not convenient for 
representing or manipulating image data. For 
instance, distributing images across map nodes 
require the translation of images into strings, 
then later decoding these image strings into 
specified formats in order to access pixel 
information. This is both inefficient and 
inconvenient .To overcome this problem, 
images should be represented in as many 
different formats as possible, increasing 
flexibility. The framework focuses on bringing 
familiar data types directly to user. As 
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distribution is important in MapReduce, images 
should be processed in the same machine where 
the bundle block resides. In a generic 
MapReduce system, the user is responsible for 
creating InputFormat and RecordReader classes 
to specify the MapReduce job and distribute the 
input among nodes. 
The functionality of the framework’s Processor 
module is described below: 
Step 1: Devise the algorithm. 
We assume that the user writes an algorithm 
which extends the provided Generic Algorithm 
class. This class is passed as an argument to the 
processor module. The framework starts a 
MapReduce job with the algorithm as an input. 
The Generic Algorithm holds an HImage 
variable, this allows user to write an algorithm 
on a single image data structure, which the 
framework then iterates over the entire image 
bundle. In addition to the algorithm, the user 
should provide the image bundle file that needs 
to be processed. Depending on the specifics of 
the image bundle organization and contents, the 
bundle is divided across nodes as individual 
map tasks. Each map task will apply the 
processing algorithm to each local image and 
append them to the output image bundle. In the 
reduce phase, the Reducer merges these image 
bundles into a large image bundle. 
Step 2: Split image bundle across nodes. 
The input image bundle is stored as blocks in 
the HDFS. In order to obtain maximum 
throughput, the framework establishes each map 
task to run in the same block where it resides, 
using custom input format and record reader 
classes. This allows maximum parallelization 
without the problem of transferring data across 
nodes. Each image bundle now applies different 
map tasks to the image data for which it is 
responsible. 
Step 3: Process individual image.  
The processing algorithm devised by the user 
and provided as input to the Processing Module 
is applied to every HImage retrieved in the map 
task. The HImage provides its image data in the 
data format (e.g. Java BufferedImage, OpenCV 
Mat, etc.) requested by the user and used by the 
processing algorithm. Once the image data type 
is retrieved, processing takes place. After 
processing, the preserved image header data 
from the original image is appended to the 
processed image. The processed image is 

appended to the temporary bundle generated by 
the map task. 
Step 4: Store processed images in an image 
bundle.  
Every map task generates an image bundle upon 
completion of its processing. Once the map 
phase is completed there are many bundles 
scattered across the computing cluster. In the 
reduce phase, all of these temporary image 
bundles are merged into a single large file 
which contains all the processed images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Single node running the Downloader 
Module (handled by the framework and 
transparent to the user 

CONCLUSION 
Map reduce parallel programming model 
provide high scalability, reliability, fault 
tolerance in distributed environment. It provides 
sequential execution of map and reduce task. In 
this paper we discussed Hadoop and HIPI’s 
map reduce implementation especially for 
image processing and computer graphics. The 
proposal aims to combine cloud computing and 
big data analysis technology to provide image 
processing cloud infrastructure and big data 
processing engine to satisfy the needs of not 
only limited for storing and managing the large 
volume of data, but also provide solution to 
improve performance and scalability.  
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