

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016
34

SCALABLE IMAGE PROCESSING THROUGH DISTRIBUTED
CLOUD ENVIRONMENT

Dr Dayananda R B1, Sreenivas T2

 1GSSIETW, Mysuru, Karnataka
2SJCE, Mysuru, Karnataka

Abstract
With the rapid growth of social media, the
number of images being uploaded to the
internet is exploding. Massive quantities of
images are shared through multi-platform
services such as Snapchat, Instagram,
Facebook and WhatsApp. Recent studies
estimate that over 1.8 billion photos are
uploaded every day. However, for the most
part, applications that make use of this vast
data have yet to emerge. Most current image
processing applications, designed for small-
scale, local computation, do not scale well to
web-sized problems with their large
requirements for computational resources
and storage. The emergence of processing
frameworks such as the Hadoop-MapReduce
platform addresses the problem of providing
a system for computationally intensive data
processing and distributed storage.

Keywords: Image Processing, Parallel and
distributed processing, Mapreduce, Hadoop,
HIPI.

I. INTRODUCTION
With the rapid growth of social media, the
number of images being uploaded to the internet
is exploding. Massive quantities of images are
shared through multi-platform services such as
Snapchat, Instagram, Facebook and WhatsApp.
Recent studies estimate that over 1.8 billion
photos are uploaded every day. However, for
the most part, applications that make use of this
vast data have yet to emerge. Most current
image processing applications, designed for
small-scale, local computation, do not scale well
to web-sized problems with their large
requirements for computational resources and

storage. The emergence of processing
frameworks such as the Hadoop-MapReduce
platform addresses the problem of providing a
system for computationally intensive data
processing and distributed storage. However, to
learn the technical complexities of developing
useful applications using Hadoop requires a
large investment of time and experience on the
part of the developer. As such, the pool of
researchers and programmers with the varied
skills to develop applications that can use large
sets of images has been limited. When
considering operations such as face detection,
image classification and other types of
processing on images, there are limits on what
can be done to improve performance of single
computers to make them able to process
information at the scale of social media.
Therefore, the advantages of parallel distributed
processing of a large image dataset by using the
computational resources of a cloud computing
environment should be considered. In addition,
if computational resources can be secured easily
and relatively inexpensively, then cloud
computing is suitable for handling large image
data sets at very low cost and increased
performance. In this information world there is
enormous amount of data flow between various
Medias at very high rate. This data is
categorized as "Big Data". Most of this
generated data are images and videos.

Big data analysis requires extensible computing
power and practiced data mining statistics,
machine learning, and pattern recognition
capabilities. It is exaggerative in image
processing domain since the video and image
processing algorithms become more and more

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016
35

complicated, which demands even more power
in computation. Some of these image processing
requires even real-time processing capability. It
is essential to create a domain specific cloud for
image processing research in order think these
challenging requirements. To fill the gap
between more complicated modern architectures
and highly emerging image processing
algorithms for big data, our image processing
with cloud project aims to produce a high-
productivity and high-performance image
processing research environment integrated
within a cloud computing infrastructure. This
proposal aims to combine cloud computing and
big data analysis technology to provide image
processing cloud infrastructure and big data
processing engine to satisfy the needs. Thus it is
a great challenge not only to store and manage
the large volume of data, but also provide
solution to improve performance and scalability.

II. RELATED WORK

With the rapid usage increase of online photo
storage and social media on sites like Facebook,
Twitter and Picasa, more image data is available
than ever before, and is growing every day.
Every minute 27,800 photos are uploaded to
Instagram, while Facebook receives 208,300
photos over the same time frame. This alone
provides a source of image data that can scale
into the billions. The explosion of available
images on social media has motivated image
processing research and application
development that can take advantage of very
large image data stores. Existing case study
mostly rely on classifying and clustering
billions of regular images using MapReduce. It
describes an image pre-processing technique for
use in a sliding-window approach for object
recognition. Some of the limitations of the
MapReduce model when dealing with high-
speed video encoding, namely its dependence
on the NameNode as a single point of failure,
and the difficulties inherent in generalizing the
framework to suit particular issues. It proposes
an alternate optimized implementation for
providing cloud-based IaaS (Infrastructure as a
Service) solutions. Lv et.al [1] describes using
the k-means algorithm in conjunction with
MapReduce and satellite/aerial photographs in
order to find different elements based on their
color. Zhang et.al [2] presents methods used for
processing sequences of microscope images of

live cells. The images are relatively small
(512x512, 16-bit pixels) stored in 90 MB
folders, the authors encountered difficulties
regarding fitting into Hadoop DFS blocks which
were solved by custom Input-Format, Input-
Split and Record-Reader classes. Powell et.al
[3] describes how NASA handles image
processing of celestial images captured by the
Mars Orbiter and rovers. Clear and concise
descriptions are provided about the
segmentation of giga-pixel images into tiles,
how the tiles are processed and how the image
processing framework handles scaling and
works with the distributed processing.
Wang,Yinhai and McCleary[4] discuss
speeding up the analysis of tissue microarray
images by substituting human expert analysis
for automated processing algorithms. While the
images were gigapixel-sized, the content was
easily segmented and there was no need to
analyze all of an image at once. The work was
all done on a specially-built high performance
computing platform using the Hadoop
framework.
Hossein Kardan Moghaddam proposed
MapReduce as a distributed data processing
model using open source Hadoop framework
for manipulating large volume of data. Muneto
Yamamoto et al. [5] suggested methods of
parallel image database processing with
mapreduce and Hadoop streaming.

III. PARALLEL APPROACHES FOR
DATA PROCESSING

A. MAP REDUCE
Map reduce is a framework for distributed
parallel processing of large image database
[8]..Map reduce model is having many different
variation with different technology and
framework .Google ,Apache Hadoop ,HIPI,
Microsoft SCOPE, Apache Pig, and Apache
Hive all these have their own customized map
reduce implementation.

1) Hadoop Mapreduce: System
Architecture

Hadoop is an open source, distributed, scalable
java based implementation which follows
Google’s MapReduce concept [9.] Hadoop is
framework which is having its own distributed
file storage system which is Hadoop Distributed
File System (HDFS) and its own computational
paradigm known as Map reduce.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016
36

Fig.1 Hadoop MapReduce Paradigm [8]

While processing Data through Hadoop Input
and output is always given through HDFS
Mapreduce is having two main elements namely
JobTracker and TaskTracker and Two functions
namely Map and Reduce. HDFS is having 2
main elements namely Name node and Data
node

A) JobTracker manage resources of
distributed system and manage job
scheduling [8].

B) TaskTracker accepts task and returns the
results after executing tasks received by
JobTracker.

C) Name node is a master server that
manages the namespace and access to files
by client’s Name and executes file
operations, such as opening, closing, and
renaming files and directories. It also
determines the mapping of blocks to Data
Nodes [8].

D) DataNodes manage the storage that is
attached to the nodes on which they run
and perform block creation, deletion, and
replication[8] .It is a place where
execution of task take place.

E) Secondary NameNode is a helper to the
primary NameNode responsible for
supporting periodic checkpoints of the
HDFS metadata[8].It is especially useful
in case of primary name node failure

F) Map task take multiple input key- value
pairs <k,v> and generate multiple <k’,v’>
intermediate pairs.

Fig 2 working of Map and reduce phase [8]

G) Reduce phase take list of input<k’, list
v’> and give final summarized output.

H) After Map task shuffle task is performed
on intermediate values to efficiently
aggregate different pairs and to save
network bandwidth.

2) HADOOP IMAGE PROCESSING
INTERFACE (HIPI)
HIPI is an image processing library designed to
be used with the Apache Hadoop Mapreduce
parallel programming framework [5]. HIPI
facilitates efficient and high-throughput image
processing with MapReduce style parallel
programs typically executed on a cluster . It is
flexible enough to withstand continual changes
and improvements within Hadoop’s Mapreduce
system. The goal of HIPI is to create a tool that
will make development of large-scale image
processing and vision projects extremely
accessible .
Primary objective of HIPI are as below:

1) Provide an open source framework over
Hadoop MapReduce for developing
large-scale image applications [5].

Fig 3 Organization of Mapreduce in HIPI

2) Provide the ability to flexibly store
images in various Hadoop file formats .

3) Provide interoperability between various
image processing libraries [5].

4) Store images efficiently for use in
MapReduce applications and simple
filtering of a set of images .

5) HIPI will set up applications so that they
are highly parallelized and balanced so
that users do not have to worry about
such details .

Working of HIPI in MapReduce
environment is as follow:

1) Input to the HIPI program is given in the
form of HIPI Image Bundle (HIB).HIB
is collection of images in variety of file
format which is stored as a single file on
the HDFS .

2) HIB is given to culling phase, which is
new in HIPI. Main goal of culling step is

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016
37

to filter the images in a HIB based on a
variety of user-defined conditions like
spatial resolution or criteria related to
the image metadata. This functionality is
achieved through the CullMapper class .

3) Images survive from cull step are given
to map function to generate intermediate
key value pairs .

4) Mapping output is shuffled to minimize
network bandwidth usage and pre
aggregate key value pairs .

5) Reduce phase will generate summarized
data in the form of one key with multiple
values pair .

The Hadoop Image Processing Framework is
intended to provide users with an accessible,
easy-to-use tool for developing large-scale
image processing applications.
The main goals of the Hadoop Image
Processing Framework are:

 Provide an open source framework over
Hadoop MapReduce for developing
large-scale image applications.

 Provide the ability to flexibly store
images in various Hadoop file formats.

 Present users with an intuitive
application programming interface for
image-based operations which is highly
parallelized and balanced, but which
hides the technical details of Hadoop
MapReduce.

 Allow interoperability between various
image processing libraries.

Downloading and storing image data
Step 1: Input a URL List.
 Initially users input a file containing URLs of
images to download. The input list should be a
text file with one image URL per line. The list
can be generated by hand, extracted from a
database or a provided by a search. The
framework provides an extendable ripper
module for extracting URLs from Flickr and
Google image searches and from SQL
databases. In addition to the list the user selects
the type of image bundle to be generated (e.g.
HAR, sequence or map). System divides the
URLs for download across the available
processing nodes for maximum efficiency and
parallelism. The URL list is split into several
map tasks of equal size across the nodes. Each
node map task generates several image bundles
appropriate to the selected input list, containing
all of the image URLs to download. In the

reduce phase, the Reducer will merge these
image bundles into a large image bundle.
Step 2: Split URLs across nodes.
From the input file containing the list of image
URLs and the type of file to be generated, the
task of downloading images across the all the
nodes in the cluster is equally distributed. The
nodes are efficiently managed so that no
memory overflow can occur even for terabytes
of images downloaded in a single map task.
This allows maximum downloading
parallelization. Image URLs are distributed
among all available processing nodes, and each
map task begins downloading its respective
image set.
Step 3: Download image data from URLs.
For every URL retrieved in the map task, a
connection is established according to the
appropriate transfer protocol (e.g. FTP,
HTTP,HTTPS, etc.). Once connected, the file
type is checked. Valid images are assigned to
InputStreams associated with the connection.
From these InputStreams, new HImage objects
are generated and the images to the image
bundle are added. The HImage class holds the
image data and provides an interface for the
user’s manipulation of image and image header
data. The HImage class also provides
interoperability between various image data
types (e.g. BufferedImage, Mat, etc.).
Step 4: Store images in an image bundle.
Once an HImage object is received, it can be
added to the image bundle simply by passing
the HImage object to the append Image
method. Each map task generates a number of
image bundles depending on the image list. In
the reduce phase, all of these image bundles are
merged into one large bundle.
Processing image bundle using MapReduce.
Hadoop MapReduce program handles input and
output data very efficiently, but their native data
exchange formats are not convenient for
representing or manipulating image data. For
instance, distributing images across map nodes
require the translation of images into strings,
then later decoding these image strings into
specified formats in order to access pixel
information. This is both inefficient and
inconvenient .To overcome this problem,
images should be represented in as many
different formats as possible, increasing
flexibility. The framework focuses on bringing
familiar data types directly to user. As

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016
38

distribution is important in MapReduce, images
should be processed in the same machine where
the bundle block resides. In a generic
MapReduce system, the user is responsible for
creating InputFormat and RecordReader classes
to specify the MapReduce job and distribute the
input among nodes.
The functionality of the framework’s Processor
module is described below:
Step 1: Devise the algorithm.
We assume that the user writes an algorithm
which extends the provided Generic Algorithm
class. This class is passed as an argument to the
processor module. The framework starts a
MapReduce job with the algorithm as an input.
The Generic Algorithm holds an HImage
variable, this allows user to write an algorithm
on a single image data structure, which the
framework then iterates over the entire image
bundle. In addition to the algorithm, the user
should provide the image bundle file that needs
to be processed. Depending on the specifics of
the image bundle organization and contents, the
bundle is divided across nodes as individual
map tasks. Each map task will apply the
processing algorithm to each local image and
append them to the output image bundle. In the
reduce phase, the Reducer merges these image
bundles into a large image bundle.
Step 2: Split image bundle across nodes.
The input image bundle is stored as blocks in
the HDFS. In order to obtain maximum
throughput, the framework establishes each map
task to run in the same block where it resides,
using custom input format and record reader
classes. This allows maximum parallelization
without the problem of transferring data across
nodes. Each image bundle now applies different
map tasks to the image data for which it is
responsible.
Step 3: Process individual image.
The processing algorithm devised by the user
and provided as input to the Processing Module
is applied to every HImage retrieved in the map
task. The HImage provides its image data in the
data format (e.g. Java BufferedImage, OpenCV
Mat, etc.) requested by the user and used by the
processing algorithm. Once the image data type
is retrieved, processing takes place. After
processing, the preserved image header data
from the original image is appended to the
processed image. The processed image is

appended to the temporary bundle generated by
the map task.
Step 4: Store processed images in an image
bundle.
Every map task generates an image bundle upon
completion of its processing. Once the map
phase is completed there are many bundles
scattered across the computing cluster. In the
reduce phase, all of these temporary image
bundles are merged into a single large file
which contains all the processed images.

Fig. 2. Single node running the Downloader
Module (handled by the framework and
transparent to the user

CONCLUSION
Map reduce parallel programming model
provide high scalability, reliability, fault
tolerance in distributed environment. It provides
sequential execution of map and reduce task. In
this paper we discussed Hadoop and HIPI’s
map reduce implementation especially for
image processing and computer graphics. The
proposal aims to combine cloud computing and
big data analysis technology to provide image
processing cloud infrastructure and big data
processing engine to satisfy the needs of not
only limited for storing and managing the large
volume of data, but also provide solution to
improve performance and scalability.

REFERENCES
[1] Zhong, J. Wu, B. Li, and H. Zhao,“Parallel

k-means clustering of remote sensing
images based on mapreduce,” in
Proceedings of the 2010 International

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016
39

Conference
[2] C. Zhang, H. De Sterck, A. Aboulnaga, H.

Djambazian, and R. Sladek, “Case study of
scientific data processing on a cloud using
hadoop,” in High Performance Computing
Systems and Applications, ser. Lecture
Notes in Computer Science, D. Mewhort, N.
Cann, G. Slater, and T. Naughton, Eds.
Springer Berlin Heidelberg, 2010, vol. 5976,
pp.400–415.

[3] M. Powell, R. Rossi, and K. Shams, “A
scalable image processing framework for
gigapixel mars and other celestial body
images,” in Aerospace Conference, 2010
IEEE, March 2010, pp. 1–11.

[4] Y. Wang, D. McCleary, C.-W. Wang, P.
Kelly, J. James,D. Fennell, and P. Hamilton,
“Ultra-fast processing of gigapixel tissue
microarray images using high performance
computing,” Cellular Oncology, vol. 34, no.
5, pp. 495–507, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s13402-011-0046-
4.

[5] Yamamoto, Muneto, and Kunihiko Kaneko,
"Parallel image database processing with
MapReduce and performance evaluation, in
pseudo distributed mode." International
Journal of Electronic Commerce Studies 3,
no. 2 (2013): 211-228.

[6] Ryu, Chungmo, Daecheol Lee, Minwook

Jang, Cheolgi Kim, and Euiseong Seo,
"Extensible video processing framework in
apache hadoop." ,In Cloud Computing
Technology and Science (CloudCom), 2013
,IEEE 5th International Conference on, vol.
2, pp. 305-310. IEEE,2013.

[7] Tan, Hanlin, and Lidong Chen,"An
approach for fast and parallel video
processing on Apache Hadoop clusters." In
Multimedia and Expo (ICME), 2014 IEEE
International Conference on, pp. 1-6. IEEE,
2014.

[8] Banaei, Seyyed Mojtaba, and Hossein
Kardan Mogha ddam, "Hadoop and Its Role
in Modern Image Processing.", Open
Journal of Marine Science 4, no. 04 (2014):
239.

[9] Zhang, Bingjing, Judy Qiu, Stefan Lee, and
David Crandall, "Large-Scale Image
Classification using High Performance
Clustering."

[10] Giachetta, Roberto, "A framework for
processing large scale geospatial and remote
sensing data in MapReduce environment."
,Computers & Graphics (2015).

