

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.10
62

BOOSTING THE CLOUD META-OPERATING SYSTEM WITH
HETEROGENEOUS KERNELS. A NOVEL APPROACH BASED

ON CONTAINERS AND MICROSERVICES
D Bikshapathi, SWAPNA PADAKANTI, ABBA CHETHANA

Assistant Professor, Department of Computer Engineering, Ellenki college of Engineering and
Technonlogy, patelguda (vi), near BHEL ameenpur (m), Sangareddy Dist. Telangana 502319

.
ABSTRACT
high SLA is a big challenge for the Cloud
providers as they have to ensure the
sustainability of their customers’ workloads
that depend closely on the undelying OS. The
kernels are the cores of the OS, and the
monolithic kernels
Introduction
The Operating Systems provide services to run
the applications. These services are invoked via
system calls implemented into libraries and
APIs.
With the emergence of the Cloud, the service
providers undertake on SLA levels too high to
run the customers’ workloads. This SLA can be
closely linked to the quality of the OS that must
be both reliable and efficient.
The model without exceptions [1] for example
has shown how the design of the OS can
improve the performance of applications.
The operating systems are based on the kernels
which form their cores. Different approaches of
design of the kernels are proposed.
Nevertheless, the monolithic kernels
[7] like Linux kernels are the most powerful.
Their fragility is due to the fact that the kernels
include the majority of the critical features (to
avoid the switches of context and gain
performance). The slightest flaw in a module of
the kernel may entail its interruption and the
break of the entire operating system.
Today, hardware virtualization is required as a
compelling solution for the consolidation of
workloads and the sharing of physical
resources. This technology is even supported
natively in the hardware. Technologies like
Intel- VT/AMD-V and SR-IOV can be cited as

examples. The virtualization, in addition to the
benefits of consolidation, offers by conception
an ideal isolation of virtual machines. Each
kernel of a given virtual machine runs in a
secure and separate space independatly of other
kernels. Consequently, thanks to the
virtualization, multiple heterogeneous systems
can coexist on the same host.
independently. Applying some principles like
the Single Responsibility Principle, changes
made to a microservice don’t affect the integrity
of other microservices.
Hardware virtualization can offer a solution to
improve the reliability of the OS. This
hypothesis is supported by VirtuOS [2] which
defines an architecture of an operating system
subdivided functionally in service domains.
Each service domain manages a functionality,
like storage, network, etc. and is executed in a
virtual machine on the Xen hypervisor to offer a
perfect insolation and security. As well, the
system calls of the applications that run in the
primary domain are routed to the adequate
service domain. Thanks to this architecture a
flaw that is registered at a service domain like a
malfunction of a driver does not cause the break
of the entire system. The restart of the failed
domain does just affect partially the process
waiting for replies from it. Other solutions
implement the same priciple like the domain-0
disaggregation in the new generation of Xen
Server called Windsor. Qubes is also an OS
containing the same architecture as VirtuOS but
it is more mature and even workable in practice.

on the other hand, Docker [6] is considered as
promising OS virtualization technique that acts

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.10
63

at the OS level by abstracting the process
execution. Although the containerisation is an
old technology in the Unix/Linux systems,
docker provides a very interesting layer of
features like the containers migration from a
version of the kernel to another version or the
application of resources constraints on the
containers, etc. via firendly tools.
The combination of the two virtualization
technologies (hardware and OS) by running
containers in virtual machines provides better
isolation and reliability.
The purpose of our work is to extend the
architecture of VirtuOS by making collaborate
several heterogeneous kernels considered as
domain services. We should apply the principle
of the scale cube [5] by splitting the APIs
according to the Y axis in small APIs executed
in containers as microservices [6] or simply as
processes hosting Web Services. These small
APIs will be executed on lightweight

virtual machines (domain services) based on
heterogeneous kernels.
This heterogeneity may engendrer a Meta-
Operating System more reliable and efficient in
bringing the benefits of heterogeneous kernels.
The Meta-Operating System can be seen as an
overlay of kernels where the kernel X offers the
services of the network via its drivers as well as
the implementation of the TCP stack while the
kernel Y offers the service of storage for access
to files for example.
Our Meta-Opertaing System’s kernels could be
virtual machines on the same host but we intend
to extend this feature to discover other
machines and domain services in the network.
The Web Services as the implementation
technology of microservices are a good
candidate to respond to this need through
standards like WS-Discovery.
The defined objetcives in our work are the
following:

• Define the architecture of a Meta-
Operating System based on several domain
services hosting heterogeneous kernels in the
form of virtual machines co-existing on the
same host or discovered in the network.
• Define the architecture of an API
subdivided in small domain services APIs.
These small APIs will be developed as

microservices and executed within containers or
as Web Services hosted into process. The
system calls routing will be abstracted by
remote calls of methods of Web Services.
• Define a proactive supervision
mecanisme so that the Meta-Operating System
isolates the faulted domain services prior to
prevent any performance degradation and
increase reliability. This same mechanism
would be able to migrate any microservice
during the execution from a suspected service
domain to another domain more reliable even
on the basis of kernels of different versions.
• Define an intelligent mecanism for
dispatching the remote system calls towards
local or remote service domains taking into
account two parameters: Reliability and
Performance.

The rest of the paper is organized as follows:
• Part 2 : Meta-Operating System
architecture design.
• Part 3 : Experimental tests results.
• Part 4 : Quick related work presentation.
• Part 5 : Conclusion.

1. The Meta Operating System Based on
Heterogenous Kernels

VirtuOs [2] and WSNFS [8] are two different
solutions that have in common the
exetrnalization of the execution of system calls
with a possibility to reuse non existing
functionalities on the original environnement
that are offered by the remote domains.
VirtuOS externalizes the system calls towards
the service domains to improve the whole
system reliability. Whereas, WSNFS aims to
abstract heterogenous file systems by
developping a single driver using Web Services.
This will also allow to the solution to be more
flexible and reliable when adding more WSNFS
gateways and drivers.
Both solutions are the basis of the Meta-
Operating System whose kernel consists of
several heterogeneous kernels co-existing on a
hypervisor or remote kernelsdiscovered in the
network. The Meta-OS caracteristics are as
follows:

• The Meta-OS is composed of varied and
heterogenous service domains. Every domain

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.10
64

implements a feature or set of features based on
a given kernel.
• The offered features are exposed via
entry points that could be invoked using
modified APIs.
• Automatic discovery mechanism of new
service domains or new features in existing
domains.
• Intelligent system calls routing from the
domain where the users’ processes are running
towards remote service domains, taking into
account two parameters: reliability and
performance.
inside containers. Different protocols can be
used to invoke the frontend APIs like TCP,
HTTP, REST,

• A proactive monitoring mechanism so
that the Meta-OS isolates the faulty domain
services before recording a performance
degradation event.
• To reuse remote service domains’
functionalities, an intelligent API is designed to
dispatch system calls to the adequate domain
service. This API has to abstract the dispatching
system end ensure the existing applications
portability.

Consequently, the Meta-OS can be seen as an
overlay of multiple kernels.
The Meta-OS is based on two categories of
domains:

• Service domains: they aim to provide
services to applications and other domains.
These domains can be instanciated, started,
stopped, paused, cloned and migrated upon
request by the Meta-OS sybsystem.
• Applications domains: they aim to
provide the execution runtime for the users’
applications. They can be considered as
customer domains consuming services from

service domains but they can play the role of
service domains.
A. Principle of system calls’ externalization
Monolithic applications present some
drawbacks like debugging difficulties and the
Single Point of Failure design. Consequently,
some patterns are invented to divide monolithic
applications into small manageable modules.
The microservices [6] are one of the paradigms
that aim to achieve these objectives. The
microservices are the small modules that
collaborate and communicate using standard
protocols like HTTP/Rest.
Each microservice is developed and deployed
independently. Applying some principles like
the Single Responsibility Principle, changes
made to a microservice don’t affect the integrity
of other microservices.
In our case, the APIs can apply the
microservices architecture, where each API is
composed of two parts (Fig. 1):

• Forontend API: this part encapsulates
the system calls invocation routines to local and
remote service domains and a load balancer
engine (LB) that aims to dispatch syscalls to
backend APIs. As these latteres are executed
into Web Services, the Frontend API
implements proxies to invoke them. The
Frontend API aims also by abstracting the
backend routines to ensure the portability of
existing applications.
• Backend APIs: each backend API
implements a subset of functionalities inside a
service domain. They will be executed into
Web Services hosted on processes or

Calling the Write method on the object fs
(FileStream type) can generate the routine of
the system call directly on the local host, an
invocation of the backend API as a Web Service
hosted in a container via the proxy (P1.Write)
or finally an invocation of the backend API as a
Web Service hosted in a process via the proxy
(P2.Write).

B. The Meta-OS architecture
The following figure presents the architecture of
the Meta- OS grouping two scenarios:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.10
65

Fig. 2. The Meta-OS architecture

1) Scenario1: co-existed domains on the
same host This sceanrio is based on the
architecture of VirtuOS. Thanks to
 advanced hardware based
 virtualization technologies, the domain
services can own a part of hardware resources
like in SR-IOV. The hypervisor ensures critical
tasks like memory management, tasks
scheduling, etc. Each domain integrates a
performance and reliability module to
instrument the syscalls without causing any
overhead. Some tools could be used to achieve
this goal like Sysdig. The performance module
ensures also the discovery of other domains
performance modules, consolidating all the data
and mataining references to the discovered
service domains.
Unlike VirtuOS, the syscalls dispatching system
is not accomplished in kernel mode but is
abstracted by the remote Backend APIs
invocation in user mode. We are aware of the
performance degradation but this can be
improved using the Hypervisor bus as
communication medium between the the co-
hosted domains.

Fig. 3 Syscalls processing via the hypervisor
bus channel.

2) Scenario2: discovered remote domains
in the network This scenario is based on the
architecture of WSNFS. The processing of the

syscalls is externalized via the remote Web
Services executed into containers or hosted
directely by processes.

Fig. 4. Syscalls processing

C. The intelligent API
The frontend API is so crucial in the process of
syscalls invocation. It implements a business
rules engine that helps in selecting the best
available service domain for the current therad
and transforming if needed the generated syscall
routine to be supported by the selected domain.
To simplify the processing of future syscalls for
a given thread, an affinity is maintained
through a table that associates a thread to its
corresponding service domains.
Three domains detinations types are defined:

• Local handler
• Remote handler on a virtual machine via
the shared bus.
• Remote handler on a virtual machine via
the network.

• User Time: time required to capture or
restore in user mode.
• Kernel Time: time required to capture or
restore in Kernel Mode.
• Real Time: the whole time required to
capture or restore taking into account
interruptions.

3. Conclusion
In this paper we tried to present the architecture
of a Meta- Operating System based on
heteregenous domain services discovered in the
network or running on the same host.
The aim of this Meta-Operating System is to
reap the benefits of all the discovered service

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.10
66

domains by developing a technique of
dispatching syscalls routines towards the most
adequate service domain. This technique is
leveraged by decomposing the APIs into
frontend APIs running in the original
applications domain and backend APIs that
expose syscall routines services.
To underpin our approach, we developed a
prototype by extending the classic API file
processing. Backend APIs as microservices run
directly in storage domain services or in
containers.
We measured performance data in different
situations and obtained very promising results
that could be optimized using advanced
techniques like GPGPU [15] to accelerate
messages processing, Exceptioneless syscalls to
eliminate the switching mode overhead, etc.

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Licence

References
1. Soares, L., & Stumm, M. (2011, June).
Exception-Less System Calls for Event-Driven
Servers. In USENIX Annual Technical
Conference (Vol. 10).
2. Nikolaev, R., & Back, G. (2013,
November). VirtuOS: an operating system with
kernel virtualization. In Proceedings of the
Twenty- Fourth ACM Symposium on Operating
Systems Principles (pp. 116-132). ACM.
3. Rutkowska, J., & Wojtczuk, R. (2010).
Qubes OS architecture. Invisible Things Lab
Tech Rep, 54.
4. Merkel, D. (2014). Docker: lightweight
linux containers for consistent
 development and deployment.
Linux Journal, 2014(239), 2.
5. Martin L. A. & Michael T. F. (2015).
Art of Scalability, The: Scalable Web
Architecture, Processes, and Organizations for
the Modern Enterprise, 2nd Edition. “Addison-
Wesley Professional, Inc.”.
6. Newman, S. (2015). Building
Microservices. " O'Reilly Media, Inc.".
7. Abraham S., Peter B.G. & Greg
G.(2013). Operating System Concepts, Ninth
Edition. “John Wiley & Sons, Inc.”.
8. Hwang, G. H., Yu, C. H., Sy, C. C., &
Chang, C. Y. (2008). WSNFS: A Web-

Services-Based Network File System. J. Inf.
Sci. Eng., 24(3), 933-947.
9. Borchert, C., & Spinczyk, O. (2016).
Hardening an L4 microkernel against soft errors
by aspect-oriented programming and whole-

program analysis. ACM SIGOPS
Operating Systems Review, 49(2), 37-43.
10. Colmenares, J. A., Eads, G., Hofmeyr,
S., Bird, S., Moretó, M., Chou, D., ... &
Asanović, K. (2013, May). Tessellation:
refactoring the OS around explicit resource
containers with continuous adaptation. In
Proceedings of the 50th Annual Design
Automation Conference (p. 76). ACM..
11. Wentzlaff, D., & Agarwal, A. (2009).
Factored operating systems (fos): the case for a
scalable operating system for multicores. ACM
SIGOPS Operating Systems Review, 43(2), 76-
85.
12. Jacobsen, C., Khole, M., Spall, S.,
Bauer, S., & Burtsev, A. (2016). Lightweight
capability domains: towards decomposing the
Linux kernel. ACM SIGOPS Operating
Systems Review, 49(2), 44-50.
13. LeVasseur, J., Uhlig, V., Stoess, J., &
Götz, S. (2004, December). Unmodified Device
Driver Reuse and Improved System
Dependability via Virtual Machines. In OSDI
(Vol. 4, No. 19, pp. 17-30).
14. Schüpbach, A., Peter, S., Baumann, A.,
Roscoe, T., Barham, P., Harris, T., & Isaacs, R.
(2008, June). Embracing diversity in the
Barrelfish manycore operating system. In
Proceedings of the Workshop on Managed
Many-Core Systems (p. 27).
15. Jordan, V. (2010). XML query
processing using GPGPU (Doctoral
dissertation, Master’s thesis, University of
Tsukuba & Université de technologie de
Belfort-Montbéliard).

