

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015
181

SIMULATION ENVIRONMENT SHOWING ENERGY
CONSERVATION FOR AGILLA MIDDLEWARE

1Dr. G. Mahadevan, 2Prof. Ms.Nirmala.S, 3Pradeep N

1Prof., 2Research Schola, 34th Semester, M-Tech,
Dept. of CSE,AMCEC , Bangalore ,Karnataka India

Email:1g_mahadevan@gmail.com, 2esthernirmala70jc@yahoo.co.in, 3pradeepnmurthy8@gmail.com

Abstract: Wireless sensor networks are
turning out to be progressively attractive to
researchers and industries, due to extensive
variety of applications. Middleware serves to
overcome the gap between the high-level
requirements of the application programs
and underlying operations of WSN. Agilla is
a portable agent middleware that encourages
the rapid deployment of adaptive
applications in wireless sensor networks
(WSNs). Agilla allows users to create and
inject special programs called mobile agents
that coordinate through local tuple spaces,
and relocate across the WSN performing
application-specific tasks. Agents can
alterably enter and exit a network and can
autonomously clone and migrate themselves
in response to environmental changes.
AgentInjector can be used to inject agents
into a network. A simulation is performed on
the mobile agents running on Agilla
middleware intended for sensor networks.
The simulations are performed using
TOSSIM assuming that Agilla middleware is
installed on the sensor nodes which are
running TinyOS operating system. Simulated
is performed on different agents
corresponding to various functions and the
time taken for agent software to run in the
simulated environment is measured. The
results of migration delay and reliability in
the simulation of agents is calculated.

Keywords: Wireless sensor network,
Middleware, Agilla, Simulation, Mobile
Agents

1. INTRODUCTION

Wireless sensor networks (WSNs) comprises of
small sensors deeply embedded within the
environment. WSNs must deal with highly
dynamic environments. For instance, while a fire
tracking network deployed in a forest may
remain inactive most of the time, a wildfire may
break out and spread unpredictably, rapidly
triggering numerous network activities.
Therefore, WSN applications need to be highly
flexible and adaptive, which places an additional
burden on the application developer.
 Middleware solutions are developed as the link
between application and low level operating
system to solve many wireless sensor network
issues, or the loss of coverage occurs. There are
diverse sorts of middleware’s developed for
distinctive purposes. Middleware’s can be
classified considering their programming
approaches, as database approach, virtual
machine approach, adaptive approach and agent
based approach.

 The Database methodology regards the entire
sensor deployment as an appropriated database.
Generally it has a simple interface to use, like
SQL that make enquiries to gather target
information. It is great at consistently queries,
but does not support actual time applications, so
at times it just gives estimated results.

 Virtual machine middleware methodology is
utilized to reducing general force and asset
utilization. The system comprises of virtual
machines and translators. Designers compose
applications into little modules, and infusing and

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015
182

conveying modules through system, and finally
virtual machines interpret the modules to
implement application

 For some predefined reason, application
specific middleware could alter system setups as
per application necessities. It has a structure that
deliveries different system measures by picking
suitable protocol in its network protocol stack.
Diverse sensors combination and system setups
give distinctive performance of QoS to meet
related application requirements.

 Agent based approach mobile agents, support
migration and use a local shared memory to
provide local communication. The main feature
of mobile agent middleware is the applications
are treat as modules for injection and distribution
through the network using mobile codes.

 Since mobile agent middleware has not been
transferred to the simulation environment,
software (Agent Injector) is used to perform
simulation of Agilla middleware on TOSSIM
[10] which is a simulation platform of WSN with
nodes running TinyOS [11]. These agents,
running on the Agilla middleware which is
installed on the motes, are allowed to perform
different tasks and the performance of the
system when running this software is evaluated.

2. RELATED WORK

 A traditional approach for WSN adaption is to
reprogram it over the wireless network. Systems
that enable this can be divided based on what is
reprogrammed, that is, native code, interpreted
code, or both. Two systems that reprogram
native code are Deluge [Hui and Culler 2004]
and MOAP [Stathopoulos et al. 2003]. They are
designed to transfer large program binaries,
enable the network to be arbitrarily
reprogrammed, but incur high overhead and
latency.

 To address this, SOS [Han et al. 2005], Contiki
[Dunkels et al. 2004], and Impala [Liu and
Martonosi 2003] are systems that enable partial
reprogramming of binary code by providing a
micro-kernel that supports dynamically linked
modules. Since modules are relatively small, the
cost of reprogramming is lower.

Systems that reprogram interpreted code include
Mat´e [Levis and Culler 2002], Application-
Specific Virtual Machines (ASVM) [Levis et al.
2005], Melete [Yu et al. 2006], and SensorWare
[Boulis et al. 2003]. In Mat´e and its successor
ASVM, applications are divided into capsules
that are flooded throughout the network. Each
node stores the most recent version of a capsule
and runs the application by interpreting the
capsules using a Virtual Machine (VM).

 The reprogramming systems share a common
feature: The decision on when and where to
reprogram the network is determined centrally at
a base station, often by a human operator. In
contrast, Agilla provides a fundamentally
different programming model based on mobile
agents and tuple spaces that are especially well
suited for self-adaptive applications in WSNs.
Mobile agents can make adaptation decisions
locally and autonomously within the network via
migration (i.e., moving and cloning). Since
network nodes are directly exposed to the
environment, they can more quickly detect
changes and
better determine when software adaptation is
necessary.

 Mobile agents have been used in the Internet
.These systems are designed to run on Internet
servers, efficient resource utilization is not their
main focus. Mobile agents have also been used
in wireless ad hoc networks. Systems that
provide this include LIME [Murphy et al. 2006],
Limone [Fok et al. 2004], and Smart Messages
[Kang et al. 2004]. All three were designed for
relatively resource rich devices and are thus not
appropriate for WSNs. For example, LIME
supports tuple spaces that span multiple hosts
incurring transactional costs [Carbunar et al.
2004], while Limone allocates a tuple space for
each agent, rendering the cost of migration
untenable. Smart Messages only supports a
single thread of execution per node, meaning it
cannot support multiple applications.

 Mobile agents have previously been
considered for use in wireless sensor networks.
For example, mobile agents can perform certain
operations like data integration [Qi et al. 2003,
2001a, 2001b] and tracking [Tseng et al. 2004a]
better than traditional client/server mechanisms,
and can be made energy efficient [Marsh et al.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015
183

2005; Tong et al. 2003]. While these efforts
promote the use of mobile agents in wireless
sensor networks, they were not actually
deployed or evaluated in a real network. Instead,
they were evaluated theoretically, in simulation,
or using networks consisting of relatively
resource-rich devices.
 Agilla is the first system to bring the mobile
agent programming model into a real wireless
sensor network. By integrating the mobile agent
and tuple space programming models, Agilla
enables applications to be locally and
autonomously self-adaptive. The Agilla
programming model and middleware
architecture meet the challenges unique to
wireless sensor networks, for example, severe
resource constraints and unreliable wireless
connectivity. The novel specialization of the
mobile agent and tuple space programming
models combined with a careful engineering
effort resulted in the working of Agilla.

3. MOBILE AGENTS

Mobile agents autonomously sense the
environment and respond accordingly. Thus
agents are very suitable to be deployed in the
sensor network environment where many
methodologies were proposed to solve the
recognized problems in sensor networks by
using agents. Mobile agents used in WSNs are
classical software agents, which are specifically
written to run separately in adaptive sensor
environments. In a WSN, different mobile
agents may be constructed for individual tasks,
which work cooperatively to achieve the main
objective of the network application

 When the agent chooses to migrate to another
node in the WSN, it logically transports its state
and code to the destination. The mobile agent
middleware framework embedded within a
sensor network is the fundamental agent-based
programming platform of the network. This
framework mainly provides the software
migration between the sensors. Agilla [8] is the
most popular agent-based middleware
framework for WSNs.

4. AGILLA

 Agilla is a middleware which supports mobile
agents on WSN. Mobile agents are dynamic,
localized, intelligent programs that can move or
clone themselves across the nodes to perform a
specific task. They are used when it is
advantageous to move software all over the
place so that the sensor nodes may perform
different tasks without the need to reload new
programs on them. After being injected into the
network, the mobile agent performs
autonomously and executes its instructions upon
reaching a sensor node. Mobile agents can also
interact with other agents and through their use,
network flexibility is considerably increased.

Agilla is initially developed for Mica2 motes
where each mote in the network is considered to
be a node. Agilla middleware is then loaded on
the nodes and mobile agents are injected to work
on this middleware. There is a neighbor list and
a tuple space on
each node which are maintained by Agilla.
Neighbor list consists of the addresses of one
hop neighbors and the tuple space stores data to
be shared by the local and remote agents (agents
which reside on other nodes). Multiple agents
may also reside on different nodes
simultaneously and they can migrate among the
nodes. Migrating agents can carry their codes
and execution states, but they cannot carry tuple
space of the node. Mica2 motes use TinyOS
operating system which is specifically
designed for sensor nodes [17].

 Portable agents running on Agilla have
numerous points of interest, for example,
adjustment to ecological changes and remote
reconstructing which are the two essential
difficulties for WSN. To delineate this
circumstance, expect that a WSN is basically
sent for interruption recognition in a building.
Common guard powers may need to reinvent the
system to identify fire or gas spill in a crisis
circumstance. Introducing every one of these
applications immediately is not adaptable,
reasonable or versatile. Portable agents
middleware address this issue. It gives element
reconstructing of WSN by permitting new
agents to be infused and permits old agents to

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015
184

pass on. Subsequently, portable agents
middleware bolster flexibility and versatility.

Since multiple agents can exist on a node
simultaneously, mobile agent middleware
support coexistence of multiple applications on
a node.

Fig 1: Agilla Model

 Fig 1 shows the Agilla architecture. There are
three layers: TinyOS, Agilla middleware, and
mobile agents. TinyOS is the lower layer of the
architecture which Geographic routing, network
stack and sensor components are managed by
that. Middle layer of the architecture is the core
component of the Agilla middleware. Five
managers together with the Agilla engine
compose the middleware. Each of these is
implemented as a TinyOS component and a
separate process. These managers are tuple
space manager, reaction manager, agent
manager, context manager and code manager.
Mobile agents constitute the top layer of the
architecture. A mobile agent is composed of a
stack, heap, various registers and code.

5. SIMULATION METHOD

TOSSIM is used to simulate a WSN with

agents loaded on each mote. The motes have
TinyOS running on them. We have also used
TinyViz, a visualization tool for TOSSIM
simulator.

To setup the simulation environment, some

software must be installed. These are: Sun’s Java
Development Kit (JDK) version 1.4.x, Sun’s
javax.comm package. Later, TinyOS, Agilla,
TinyViz and AgentInjector can be installed.
mobile agent middleware such as Agilla has not
been transferred to the simulation environment,

Thus Agent Injector can be used to inject agents
into a network.

First goal in conducting the simulations was to

measure performance of important Agilla
instructions. The simulations are performed on a
25-node network arranged in a 5*5 grid. The
term “migration” consists of moving and cloning
of an agent. Moving of an agent is the
transferring of the agent from one node to
another node, whereas cloning is copying an
agent from one node to another node. Special
instructions are used to move or clone one agent
from one node to another.

Cloning instructions are sclone and wclone.
Moving instructions are smove and wmove. In
order to benchmark strong and weak migrations,
we used test agents. We measured consumed
time during the smove (strong move), wmove
(weak move), sclone (strong clone) and wclone
(weak clone) operations.

 The first letter indicates whether the operation
is weak or strong. A weak migration transfers
only the code, all execution state is reset and the
agent resumes running from the beginning when
it arrives at the destination. A strong migration
transfers everything, meaning an agent resumes
execution where it left off. Our experience with
the fire tracking application shows that the
choice between strong vs. weak migration
significantly affects the application overhead,
performance, and reliability.

6. SIMULATION

We used two different scenarios to benchmark
move (smove and wmove) and clone (sclone and
wclone) instructions. The difference between the
scenarios is the heap operations; 10 variables are
recorded to the heap in the first scenario while
heap operations were not used in the second
scenario. The heap is a random-access storage
area that can store up to 12 variables. First, we
test smove and wmove instructions for each
scenario (with and without heap operations).
Then, sclone and wclone instructions are
simulated for same scenarios.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015
185

6.1. SMOVE VS. WMOVE (WITH HEAP

OPERATIONS)

The agent used to simulate smove instruction
with heap operations is shown in Fig 2. This
agent saves 10 values to its heap and moves to a
random neighbor carrying its code, program
counter, stack and heap. Simulation of these
agents are done on a virtual wireless sensor
network with 25 nodes. The simulations is
repeated 50 times for each agent (smove and
wmove) and the average elapsed times for
smove and wmove operations were computed.

Fig 2 : Latency of smove and wmove
instructions with heap operations.

According to Fig 2, average migration time of an
agent from one node to another is 298
milliseconds with the smove instruction; while
wmove takes 153 milliseconds. This result is
expected, because smove instruction transfers
agent’s heap together with the agent’s code,
while wmove instruction transfers only the
agent’s code. Each variable in the heap is 40 bits;
therefore, 10 variables use 400 bits. This extra-
load increases the migration time of smove
agent.

6.2. SMOVE VS. WMOVE (WITHOUT HEAP

OPERATIONS)

In these agents, heap operations are removed to
test the amount of the time taken for smove and
wmove. The simulations is repeated for 50 times
for each agent (smove or wmove) and the
average latency is computed for smove and
wmove operations.

Fig 3: Latency of smove and wmove
instructions without heap operations

Average migration time of an agent from one
node to another is 139 milliseconds with the
smove instruction; while wmove takes 153
milliseconds. This result is expected, because in
a weak migration, agent resumes execution from
the beginning.

6.3. SCLONE VS. WCLONE (WITH HEAP

OPERATIONS)

The simulations was reapeated for 50 times on a
simulated wireless sensor network with 25 nodes
as in the previous simulations. Fig 4 displays the
results of the simulations for sclone and wclone
agents with heap operations.

Fig 4. Latency of sclone and wclone
instructions with heap operations

According to Fig 3, average migration time of an
agent from one node to another is 256
milliseconds with sclone instruction; while
wclone takes 193 milliseconds. This result is
expected, because transferring agent’s code
together with the agent’s heap increases latency.

6.4. SCLONE VS. WCLONE (WITHOUT HEAP

OPERATIONS)

According to Fig 5, average migration time of an
agent from one node to another is 170
milliseconds with the smove instruction; while
wmove takes 193 milliseconds. This result is

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015
186

expected, because in a weak migration, agent
resumes execution from the beginning.

Fig 5: Latency of sclone and wclone
instructions without heap operations

7. SPREADING OF AGENT

BENCHMARK

 To measure the spreading performance of the
agents, a scenario is created according to which
an agent is injected to a node of the WSN to
sense the temperature of the node and send the
recorded value to the base station, and the agent
clones itself to its neighbors for spreading into
the network. Neighbor nodes are chosen
randomly by randnbr instruction. This
instruction looks at the neighbor list of the agent
and chooses a random location from the list. The
goal of the agent is to visit all the nodes of the
WSN and send temperature readings to the base
station. Clone operations were preferred to
provide faster spreading. Since wclone
instruction is more efficient than sclone as
mentioned before, it was chosen for migration.
This agent has been tested on simulated wireless
sensor networks which included various number
of nodes. The agent was tested 10 times on each
WSN. Average values of the tests are taken as
the final result. Simulation results are shown in
Fig 6. The graph shows that the agent can spread
into a 5-node Wsn in 0.4 seconds while it can
spread into a 15-node WSN in 1.3 seconds. As
expected, larger WSN increases spreading time.
On the other hand, latency per node is decreased
as the network size increases. For example, 115
ms is consumed per node for a 5-node WSN,
while 80 ms is consumed per node for a 150-
node WSN.

As mentioned before, the agent clones itself to
its neighbors randomly. Accordingly, the agent
is cloned to some nodes more than once while

other nodes aren’t visited by the agent.
Reliability of this agent is computed according
to the equation:

Fig 6: The Agent’s Spreading Time into WSN

Reliability = total number of nodes – number of
unvisited node
 Total number of nodes

 Result of the reliability analysis is shown in Fig
7. Reliability of the agent changes between 76%
and 85% inconsistently because of the random
nature of the migration operation.

Fig 7: Reliability of the agent in Fig 6.

8. CONCLUSIONS

Simulation was performed on mobile agent
middlewares in TinyOS and presented a
simulation environment for mobile agents
running on Agilla using TOSSIM. Different
Agilla commands were tested and the execution
time of each agent were measured using
simulation. By utilizing TinyViz to visually
observe the simulation process and
AgentInjector to transfer Agilla to the simulation
environment, different Agilla commands were
tested and execution time of each agent was
measured using simulation and the results were
analyzed for simulation validation process.
These experiments will be carried out using

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015
187

different network topologies and different
agents in the future. Actual network will be setup
and experiments will be compared with
simulations as future work.

REFERENCES

[1] Wang, M., Cao, J., Li,J., and Sajal K. Dasi.
(2006). "Middleware for Wireless Sensor
Networks: A Survey". Department of Computer
Science, Internets and Mobile Computing Lab,
Department of Computer Science and
Engineering,, Supported by Hong Kong
Polytechnic University under the ICRG grant
NO.G-YE57, Hong Kong RGC under the Grant
of A Research Center Ubiquitous Computing
and the National Hi-Tech Research and
Development 863 Program of China under Grant
No.2006AA01Z231.

[2] Md.Atiqur.R.(2009). "Middleware for
wireless sensor networks Challenges and
Approaches". TKK T-110.5190 Seminar on
Internetworking.

[3] Tong, S. (2009). "An Evaluation Framework
for middleware approaches on Wireless Sensor
Networks". Seminar on Internetworking.
Helsinki University of Technology, TKK T-
110.5190.

[4] Molla M.M., Ahamed S.I. 2006. A survey of
middleware for sensor network and challenges.
In Proceedings of IEEE International
Conference on Parallel Processing Workshops
(Milwaukee, Wisconsin, August 14 – 15, 2006)

[5] Yao, Y. and Gehrke, J. 2002. The cougar
approach to innetwork query processing in
sensor networks. SIGMOD Rec. 31, 3 (Sep.
2002), 918.

[6] Yu, X., Niyogi K., Mehrotra, S. and
Venkatasubramanian N. 2003. Adaptive
Middleware for Distributed Sensor
Environments. IEEE DS Online 4, 5 (May
2003).

[7] Madden, S. R., Franklin, M. J., Hellerstein,
J. M., and Hong, W. 2005. TinyDB: an

acquisitional query processing system for sensor
networks. ACM Trans. Database Syst. 30, 1
(Mar. 2005), 122173.

[8] MC Lin, YC Chen, SL Tsao. (2012). "Design
and implementation of a home and building
gateway with integration of nonintrusive load
monitoring meters" Industrial Technology
(ICIT), 2012 IEEE International Conference.
148-153.

[9] Prasannasrinivasa.S and Suman.N. (2012).
"A Study of Middleware for Wireless Sensor
Networks". International Journal of Research
and Reviews in Ad Hoc Networks (IJRRAN)
Vol. 2, No. 2, June 2012, ISSN: 2046-5106.

[10] Kumar.A, Xie.B. (2012)." Handbook of
Mobile Systems Applications and Services.
"University of Louisville, Louisville, KY, USA,
University of Cincinnati, Cincinnati, OH, USA .

[11] Md.Atiqur.R. (2009). "Middleware for
wireless sensor networks Challenges and
Approaches". Helsinki University of
Technology, Seminar on Internetworking. TKK
T-110.5190.

[12] Fok, C.-L. , Roman, G.-C. , and Lu, C.
(2009). "Agilla: A mobile agent middleware for
self-adaptive wireless sensor networks". ACM
Trans. Autonom. Adapt. Syst. 4, 3, Article 16
(July 2009), 26 pages DOI =
10.1145/1552297.1552299

