

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-6, 2015
43

FPGA PLACE AND ROUTE ALGORITHM ANALYSIS
USING KL-ALGORITHM

Rachana Borghate1, Samrudhi Shirgaonkar2, Apurva Ganar3

Lecturer, Electronics Enggineering, RGCER, Nagpur, India1
Lecturer, Electronics Engineering, SRMCEW, Nagpur, India2
Lecturer, Electronics Enggineering, RGCER, Nagpur, India3

Abstract: In the fast growing
communication field, requirements of
minimization are increasing to reduce the
cost and timing of the integrated circuit.
Efficient placement and routing algorithms
play an important role in FPGA
architecture research. Together, the place
and route algorithms are responsible for
producing a physical implementation of an
application circuit on the FPGA hardware.
The KL- Algorithm along with the
reduction in the circuit as well as the
implementation of the algorithm is shown
using processor design which further
reduces the cost and power increases the
performances.
Keywords: KL algorithm, Place and
Route, FPGA

1. INTRODUCTION
Improvements in computer performance
have traditionally been the result of higher
clock speed, pipelining, cache memories,
multiple execution units, hardwired control
units, and RISC. With the appearance of
reconfigurable devices such as field
programmable gate arrays (FPGAs), a new
means for increasing computer performance
has become possible. High-quality
partitioning is necessary to achieve
acceptable utilization of the reconfigurable
resources. The goal of this paper is to look
at the partitioning problem for Digital Logic
Circuit implemented on FPGA and present
algorithm to solve variants of the
partitioning problem specific to particular
digital logic circuit.

The need for software tools is because of the
complexity of the circuitry within the FPGA,
and the function the designer wishes to perform.
Place and route is a stage in the design of
printed circuit board, integrated circuits, and
field-programmable gate arrays. As implied by
the name, it is composed of two steps, placement
and routing [1]. The first step, placement,
involves deciding where to place all electronic
components circuitry, and logic elements in a
generally limited amount of space. This is
followed by routing, which decides the exact
design of all the wires needed to connect the
placed components. This step must implement
all the desired connections while following the
rules and limitations of the manufacturing
process.
The FPGA is designed using logic diagrams
containing both digital logic and Very High
Speed Integrated Circuits Hardware Description
Language (VHDL), or Verilog [9]. These will
then be put through an automated place-and-
route procedure to generate a pin out, which will
be used to interface with the parts outside of the
FPGA. The final layout of early ICs and PCBs
was stored as a tape out of Rubylith on
transparent film.
Gradually, electronic design automation
automated more and more of the place and route
work [10]. At first, it merely sped up the process
of making many small edits without spending a lot
of time peeling up and sticking down the tape.
Later design rule checking speed up the process of
checking for the most common sorts of errors.
Later auto routers speed up the process of routing.
Some people hope that further improvements in
auto-placers and auto-routers will eventually

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-6, 2015
44

produce good layouts without any human
manual intervention [5].
Probably the most successful heuristic for
partitioning large graphs is the multilevel
graph partitioning approach which was
initially introduced to the graph partitioning
field in the nineties by Barnard and Simon
[18] to speed up spectral partitioning
techniques.
After applying an initial partitioning
algorithm to the smallest graph, the
contraction is undone and, at each level, a
local search method is used to improve the
partitioning induced by the coarser level [16].
High-quality partitioning is critical in high-
level synthesis. To be useful, high level
synthesis algorithms should be able to handle
very large systems. Typically, designer‟s
partition high-level design specifications
manually into procedures, each of which is
then synthesized individually [19]. Generally
the FPGA design-flow map designs onto an
SRAM-based FPGA consist of three phases.
The first phase uses synthesizer which is used
to transform a circuit model coded in a
hardware description language into an RTL
design. The second phase uses a technology
mapper which transforms the RTL design
into a gate-level model composed of look-up
tables (LUTs) and flip flops
(FFs) and it binds them to the FPGA‟s
resources (producing the technology-mapped
design). During the third phase, the place and
route algorithm use the technology-mapped
design to implement on FPGA.

The routing and placing operations may
require a long time for execution in case of
complex digital systems, because complex
operations are required to determine and
configure the required logical blocks within
the programmable logic device, to
interconnect them correctly, and to verify that
the performance requirements specified
during the design are ensured. The delay
introduced by logic block and the delay
introduced by interconnection can be
analyzed by the use of efficient place and
route algorithm.
The placement algorithms use a set of fixed
modules and the netlist describing the
connections between the various modules as
their input. The output of the algorithms is the
best possible position for each module based

on various cost functions. We can have one or
more cost functions depending on designs.

2. PLACING AND ROUTING

These operations are performed when an FPGA
device is used for implementation. For designing,
Placing is the process of selecting particular
modules or logical blocks of the programmable
logic device which will be used for implementing
the various functions of the digital system.
Routing consists in interconnecting these logical
blocks using the available routing resources of the
device.

3. PARTITIONING
Partitioning is a problem with any design using
more than one component. It is a particularly
interesting problem in embedded systems because
of the heterogeneous hardware/software mixture.
Partitioning can be classified on four main
characteristics:

� The specifications model supported
� The granularity
� The cost function
� The algorithm

Explored algorithm classes include greedy
heuristics, clustering methods, iterative
improvement and mathematical programming.
Partitioning is done together with scheduling,
since the overall goal is to minimize response
time. An initial partitioning is obtained by
classifying blocks according to whether or not
they are synthesizable and whether or not the
communication overhead justifies a hardware
implementation. The initial partitioning is then
improved by Kernighan-Lin iterative swapping
process.
Originally, this algorithm was developed for a
formulation of the circuit partitioning problem
(Kernighan and Lin, 1970). Its aim is to partition a
graph into two parts of equal size with a minimal
number of cutting edges. It is a so-called iterative
improvement algorithm, meaning that it starts
from an arbitrary partition, and swaps pairs of
nodes in order to improve the cost of the partition
The reason for the success of the KL is that it is
fast as a greedy algorithm.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-6, 2015
45

3.1 Partitioning Algorithm

Basic purpose of partitioning is to simplify
the overall design process. The circuit is
decomposed into several sub circuit to make
the design process manageable.
Now partitioning can be done at different
levels.

1. System Level Partitioning.
2. Board Level Partitioning.
3. Chip Level Partitioning.

At the system level, a system is partition into
a set of subsystems such that each subsystem
can be designed and fabricated independently
on a single PCB. At the board level, the
circuit assigned to a PCB is partitioned into
sub circuits such that each sub circuit can be
fabricated as a VLSI chip. And then, the
circuit assigned to a chip is partitioned into
smaller sub circuits. Physical partitioning at
the chip level is not necessary.

Fig 1 Partitioning done at different levels.

The partitioning problem can be formulated
as follows: the objective is to minimize the
number of interconnects between partitions
and minimize the delay due to partitioning.
These objectives need to be achieved while
satisfying the following constraints the
number of terminals in each subsystem
should be less than a max value, there is an
upper limit and lower limit on the area of
each partition and number of partitions. The
most important constraint is that the critical
path should not cut partition boundaries.
Decomposition of a complex system into
smaller subsystems, each subsystem can be
designed independently speeding up the
design process. Decomposition scheme has to
minimize the interconnections among the

subsystems. Decomposition is carried out
hierarchically until each subsystem is of
manageable size.
Here we have two sample placement results. If
you notice the IO pads for the placement on the
figure 2.a) are distributed along the periphery,
while for the placement on the figure2.b) the IO
pads are clustered in one place. As you can see
there is no congestion for wire routing so that
avoids any hotspots, we are using shorter wires
which reduce area, power and delay. It also
reduces the number of metal levels. On the other
hand, for the bad placement we have congestion,
long wire length, more delays, more metal level
and higher power dissipation leading to an
inefficient design.

Fig 2.a) Good placement Fig 2.b) Bad
placement
Importance of Circuit Partitioning:-
1. Divide-and-conquer methodology - The most
effective way to solve problems of high
complexity E.g.: min-cut based placement,
partitioning-based test generation,
2. System-level partitioning for multi-chip designs
inter-chip interconnection delay dominates system
performance.
3. Circuit emulation/parallel simulation partition
large circuit into multiple FPGAs (e.g.
Quickturn), or multiple special-purpose
processors (e.g. Zycad).

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-6, 2015
46

4. Parallel CAD development Task
decomposition and load balancing
Different Partitioning
methods: Top-down
partitioning

� Iterative improvement
� Spectral based
� Clustering methods
� Network flow based
� Analytical based
� Multi-level

Bottom-up clustering
� Unit delay model
� General delay model
� Sequential circuits with retiming

Partitioning is assigning of logical
component to physical packages:

1. Circuit is too large to be placed on a
single chip.

2. I/O pins limitation.
Iterative Partitioning Algorithms:-

1. Greedy iterative improvement method
� [Kernighan-Lin 1970]
� [Fiduccia-Mattheyses 1982]
� [krishnamurthy 1984]

2. Simulated Annealing
� [Kirkpartrick-Gelatt-Vecchi 1983]

4. KERNIGHAN-LIN (KL)

ALGORITHM
The Kernighan-Lin algorithm is used to view
external against internal cost between nodes
of a graph that emerges from the given
dataset to be clustered. The figure below,
figure 3, shows two partitions; Partition A
and Partition B. The nodes of the graph are
assigned to each of the partitions. The
internal cost is the cost of an edge between
two nodes within the same partition. The
external cost is the cost of the edge of a node
in one partition to a node in the other
partition. The Kernighan-Lin algorithm and
used in this thesis uses two partitions only.
The cost within each partition, the internal
cost, is rated lower than the cost between
nodes across the partition, the external cost.

Fig 3 Internal Cost Vs External Cost

The algorithm tries to move each node
between partitions so that the graph is
maintained but with as low cost, the total sum
of internal and external, as possible. Thus it
means that the internal cost should be
maximized while the external cost is
minimized. The Kernighan-Lin heuristic
partitioning of interconnected graphs has been
used in circuit partitioning for a time. And it
has been proven to be very successful. The
results are close to the optimum and the time-
complexity is almost linear.
The Kernighan-Lin can be easily
implemented in hardware or software or a
combination of the two, and over time the
Kernighan-Lin has proven difficult to
outperform. There are faster algorithms, and
more accurate but as a combination
Kernighan-Lin is one of the best. The results
for Kernighan-Lin algorithm are a result of an
extension provided by Fidduccia/Mattheyses
and their addition made the Kernighan-Lin
run in linear-time.

The K-L (Kernighnan-Lin) algorithm was
used for bisecting graph in VLSI layout
which was first suggested in 1970. The
algorithm is an iterative algorithm; which
Starts from a load balanced initial bisection, it
will first calculate each vertex gain in the
reduction of edge-cut that may result if that
vertex is moved from one partition of the
graph to the other. For every inner iteration it
moves the unlocked vertex having the highest
gain, from the partition with more vertices to
the partition which it requires which has less
in number. Then the vertex is locked and the
gains are updated.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-6, 2015
47

The procedure is repeated until all of the
vertices are locked even if the highest
gain may be negative. The last few
moves that had negative gains are then
undone and the bisection is reverted to
the one with the smallest edge-cut so far
in this iteration. Here one outer iteration
of the K-L algorithm is completed and
the iterative procedure is restarted again.
If an outer iteration will results in no
reduction in the edge cut or load
imbalance, then the algorithm is
terminated.

Node a ALU

Node b Accumulator
Node c Temporary register
Node d Register Bank
Node e Control Unit
Node f Memory

If an outer iteration gives no reduction in
the edge-cut or load imbalance, the
algorithm is terminated. The K-L
algorithm is a local optimization
algorithm, with a capability for getting
moves with negative gain.

4.1. How KL Works

Let we have a graph G (V, E), and let V
be the set of nodes and the E set of edges.
The algorithm attempts to find a partition
of V into two disjoint subsets A and B of
equal size, or unequal such that the sum
T of the weights of the edges between
nodes in A and B is minimized.
Let Ia be the internal cost of a, that is, the
sum of the costs of edges between a and
other nodes in A, and let Eabe be the
external cost of a, that is, the sum of the
costs of edges between a and nodes in B.
Furthermore, let Da, Da = Ea – Ia be the
difference between the external and
internal costs of a. If a and b are
interchanged, then the reduction in cost is

Told – Tnew = Da + Db – 2Ca,b
Where Ca,b is the cost of the possible
edge between a and b.
The algorithm will try attempts to find an
optimal series of interchange operations
between elements
of A and B which maximizes Told – Tnew
and then executes the operations,
producing a partition of
the graph to A and B[5].
We can try all possible bisections.

Choose the best one. If there are 2n vertices,
then numbers of possibilities are (2n)! / 2(n!)2
.For 4 vertices (A, B, C, D), possibilities are
three:

1. X = (A, B) and Y = (C, D)
2. X = (A, C) and Y = (B, D)
3. X = (A, D) and Y = (B, C)

4.2 KL Algorithm
Implementation A Processor
Design:
A weighted graph G = (V, E) with Vertex set
V. (|V| = 2n) Edge Set E. (|E| = e) Cost c(A,B)
for each edge {A, B} in E. These are the
required inputs and the outputs are 2
partitions X & Y such that total cost of edges
“crossing” the partition are minimized. Each
partition has n vertices. Try all possible
bisections. Choose the best one. If there are
2n vertices, then number of possibilities is
(2n)! / 2(n!)2. For 4 vertices (A,B,C,D),
possibilities are three:
1. X = {A, B} & Y = {C, D}

2. X = {A, C} & Y = {B, D}

3. X = {A, D} & Y = {B, C}

Start with any initial legal partitions X and Y.
Now the processor design application was
converted to six nodes as mentioned above in the
designing aspects according to KL algorithm. The
nodes are

Table 1 Assigning nodes to the Processor

Fig 4 Processor Design before applying algorithm

In the above initial cut size = (32+16+32+16+16)
= 112
Initial weighted graph G with V (G) = {a, b, c, d,
e, f} Start with any partition of V (G) into A and
B, say A= {a, c, e} B = {b, d, f}
Compute the D-values
Da = Ea – Ia = 0 (= 32 – 16 – 16)
Dc = Ec – Ic = 0 (= 32 –16 – 16) De
= Ee – Ie = + 16 (= 48 – 32) Db = Eb

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-6, 2015
48

– Ib = + 16 (= 48 –32) Dd = Ed
– Id = – 16 (= 48 – 64) Df = Ef
– If = – 16 (= 16– 32) Compute
the gains
gab = Da + Db – 2wab = 0+ 16 – 2�32
= –48 gad = Da + Dd – 2wad = 0 – 16 –
2�0 = –16 gaf = Da + Df – 2waf = 0 –
16 – 2�0 = – 16 gcb = Dc + Db – 2wcb
= 0 + 16 – 2�0 = +16 gcd = Dc + Dd –
2wcd = 0 – 16 – 2�32 = –80 gcf = Dc +
Df – 2wcf = 0 – 16 – 2�0 = – 16 geb =
De + Db – 2web = +16 + 16 – 2�16 =0
ged = De + Dd – 2wed = +16 – 16 – 2�16 = –
32
gef = De + Df – 2wef = +16 – 16 – 2�16 = –
32
We observe from figure 4 that the cutsize
initially is 112 and thereafter finding the
highest gain and swapping the nodes we had
got the cutsize to be 96 as shown in fig.5

Fig 5 Processor Design after applying
algorithm

From the above fig cut size =
(16+16+32+16+16) =96

5. RESULTS AND CONCLUSION

Fig 6 Command window history showing
Initial cost and final costHere we have
presented the implementation of KL-
Algorithm along with the reduction in the

circuit as well as the implementation of the
algorithm using Processor design which further
reduces the cost and power and increases the
performances.
Thus it reduces the cost parameters for the digital
logic circuit as it is observed by following the
results of processor design. It optimized the area
and further reduces the routing delay. The KL
partitioning algorithm has been implemented and
the result has been observed on the processor
based design. Thus the algorithm helps to solve
placement and routing problems to certain extent
for the FPGA.
Also here we have tried o reduce time complexity
because of KL- Algorithm initial bisection and cut
size. The results show that cut size is reduced after
applying the algorithm for the given circuits and
the applied custom circuit.

6. CONCLUSION
The quality of the place-and-route algorithms
has a direct bearing on the usefulness of the
target FPGA architecture. The benefits of
including powerful new features on an FPGA
might be lost due to the inability of the place-
and-route algorithms to fully exploit these
features. Thus the advancement of FPGA
architectures relies heavily on the
development of efficient place-and-route
algorithms. KL Algorithms increase the
performance by reducing the wire delay.
Further work is necessary in the use of kl-
feasible cuts for the optimization purpose.
Analysis of an efficient algorithm for Place
and route process would be done, in order to
place the components efficiently and create a
proper routing path between them on FPGAs.
In this paper we have presented a new
methodology for Digital circuits here example
is considered as multiplier, which in turns
reduces the area and increases the
performance of the circuit type algorithms for
the problem of hardware/software
partitioning.

7. REFERENCES

[1] Xilinx Inc., “Spartan-II 2.5 V FPGA
Family: Introduction and Ordering
Information,”
Xilinx Product Specification Datasheets,
2003

[2] Luca Sterpone, Student Member, IEEE,

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-6, 2015
49

and
Massimo Violante, Member, IEEE.”
A New
Reliability-Oriented Place and Route
Algorithm for SRAM-Based
FPGAs”, IEEE TRANSACTIONS
ON COMPUTERS, VOL. 55, NO. 6,
JUNE 2006

[3] Chenguang Guo, Yanlong Zhang,
Lei Chen, Tao Zhou, Xuewu Li, Min
Wang, Zhiping
WenDept. FPGA „A Novel
Application of
FPGA-Based PartialDynamic
Reconfiguration
System with CBSC” 2012 IEEE

[4] Virtex-II Pro and Virtex-II Pro X
Platform FPGAs: Complete
DataSheet, Xilinx Corporation,
DS083 (v4.7) Nov. 5, 2007.

[5] Osvaldo Martinello Jr, Felipe S.
Marques,
Renato P. Ribas, André I. Reis “KL-
Cuts:A New Approach for Logic
Synthesis Targeting Multiple Output
Blocks”,777-782

[6] Amr M. Fahim, “Low-Power High-
Performance Arithmetic Circuits and
Architectures”, IEEE Journal of
Solid-State Circuits, Vol. 37, No. 1,
pp. 90-94, January 2002

