

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
105

EFFECTIVE RESOURCE MANAGEMENT IN MOBILE
CLOUD COMPUTING

1D.NAVEEN, 2V KAVITHA
P.G. Student, Associate Professor

Computer Science, Sri SaiRam Engineering College,Chennai,India
Email: 1nvn882@gmail.com, 2kavitha.CSE@sairam.edu.in

Abstract— The aim is to achieve improve
quality of mobile services. Computing and
Radio Resources is a problem in Mobile
Cloud Computing environment. Resource
Management techniques provides resource
reservation. Utilization is decrease and
revenue will be increase for mobile cloud
providers. In this paper the problem of the
finite and rather small battery energy
capacity in today’s mobile devices has limited
the functionality that can be integrated into
these platforms or the performance and
quality of applications that can be delivered
to the users. Different mobile cloud providers
cooperatively share the resource in resource
pool to optimize the allocation of resource in
order to satisfy the user demand and share
the revenue in mobile cloud providers.

Index Terms— Mobile Cloud computing,
Resource Pool, Cloud Service Provider
(CSP).

I. INTRODUCTION

Mobile cloud computing, which integrates
cloud computing into a mobile computing
environment, is a new paradigm for supporting
mobile users. Continued evolution of mobile
systems including smart phones and tablet-PCs
has resulted in ever more powerful yet more
power hungry embedded systems with
advanced functionality and high performance.
Unfortunately, the increase in
volumetric/gravimetric energy density of

(rechargeable) Batteries has been much slower
than the increase in the power Demand of these
devices, resulting in a short battery life in these
devices and a “power crisis” for the Smartphone
technology development and product line
expansion. Therefore, an effective solution to
achieve a reasonable balance between the
performance and power consumption of
applications is required to ensure the overall
service quality of the mobile devices.
To provide an alternate method of managing
the applications in a mobile device, the concept
of mobile cloud computing (MCC) system has
been employed. The idea is to move the
processing, memory, and storage requirements
of some applications from the resource limited
mobile devices to the resource unlimited cloud.
Resource management techniques such as
resource reservation is a key approach to
maintain the quality of service (QoS)
Performance. This is particularly important for
mobile cloud Computing applications with real-
time requirements. Efficient Resource
management methods are required to maximize
the Utilization of the resources and thereby
maximize the revenues of the mobile cloud
service providers. To tackle this resource
management problem and also to increase the
revenue of mobile cloud service providers, a
resource pool can be created. Specifically,
multiple cooperative mobile cloud service
providers can share their radio and computing
resources in the pool. As a result, the resources
that are not used by one service provider can be

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
106

used by other service providers, when required,
and thereby, the resource Utilization can be
increased.

II OPTIMIZATION MODELS
We formulate and solve three optimization
models to obtain the optimal decisions on
allocation of resources.

Linear programming formulation: We propose
a basic optimization model for the cooperative
mobile cloud service providers. We apply this
model when all the resource allocation
parameters are deterministic. Specifically, when
the model observes the exact values of the
system parameters, the model will make a
decision on whether to support application
Instances from users or not.

Stochastic programming formulation: We
propose this model for the cases when the
system parameters are random. The stochastic
programming model requires the probability
distributions of the random parameters (e.g.,
available resources and users’ demand). The
cooperative mobile cloud service providers can
apply this model to make decisions in two
stages. In the first stage, the providers make a
decision to admit application instances based on
the statistical information (e.g., probability
distribution) about the available resources.

Robust optimization formulation: We apply this
model when we only know the ranges of the
values of the random parameters (e.g., resource
requirements). The conservativeness of the
solution from the robust optimization model is
adjustable, giving flexibility to the Resource
allocation to mobile applications.
We propose a game model for cooperation
formation among mobile cloud service
providers to decide whether they should
cooperate and create the resource pool or not.
The solution of the game model is a stable
cooperation strategy (or Nash equilibrium)
which ensures that the rational mobile cloud
service providers cannot unilaterally change
their decisions. In addition, the providers can
decide on the amount of resources to contribute
to the resource pool. This is referred to as the
capacity expansion for which we analyze the
stable strategy (or Nash equilibrium).
The proposed framework provides multiple
cooperative mobile cloud service providers can

share their resources. In fact single request
handles multiple processes. This is based on
well optimized resource management process
and their own benefits Given energy
consumption is reduced and computation of
mobile device and cloud server decreased.

III. MOBILE CLOUD COMPUTING
MODEL

 Mobile cloud computing model

The Mobile devices can access the cloud based
on the Programming formulation. There are two
levels we can access the cloud. In first level
allocating the resource to the cloud. The data is
send only bit type not character format. In
second level once the data is sending means
compressing that data in capacity expansion
based on stochastic programming. Finally we
can retrieve the original data with less size.

We consider the MCC environment as shown in
.The users can download the mobile
applications from an application server. The
mobile application in the MCC is divided into
two parts, i.e., local computing modules and
remote computing modules. The local
Computing modules run-on a mobile device and
the remote computing modules run on a
computing server in a data center. The data
transfer between local and remote computing
modules of the mobile applications requires a
wireless access network and a wired network.
Specifically, the wireless access network is for
the communication between the mobile device
and the wireless base station. The wired
network is for the communication among the
wireless base station, application server, and
computing server. Running the mobile
applications needs the radio resource (i.e.,
bandwidth) and computing resources (e.g.,

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
107

memory and CPU of a server) and they have to
be reserved. We assume that the wired network
has abundant bandwidth and reservation is not
required. Nevertheless, the model can be
extended easily to consider bandwidth
reservation in the wired network as well. In the
MCC environment, when a user wants to run
mobile applications, she will send a request to
the application server through wireless and
wired connections.

The application server contacts the base station
and data center to obtain the radio and
computing resources. If the available radio and
computing resources are sufficient, the user can
run the mobile application. The remote
computing modules will be downloaded and run
on the computing server in the data center for
that user.

IV DESIGN GOALS AND FRAMEWORK

The design of Mobile cloud computing is based
on some assumptions which we believe are
already, or soon will become, true:(1) Mobile
broadband connectivity and speeds continue to
increase, enabling access to cloud resources
with relatively low Round Trip Times (RTTs)
and high bandwidths; (2) As mobile device
capabilities increase, so do the demands placed
upon them by developers, making the cloud an
attractive means to provide the necessary
resources; and (3) Cloud computing continues
to develop, supplying resources to users at low
cost and on-demand. We We reflect these
assumptions in Mobile cloud computing
through four key design objectives.

(i) Dynamic adaptation to changing
environment.
 As one of the main characteristics of mobile
computing environment is Rapid change,
Think Air framework should adapt quickly and
Efficiently as conditions change to achieve high
performance As well as to avoid interfering
with the correct execution of Original
software when connectivity is lost.
(ii) Ease of use for developers. By providing a
simple interface for developers, Think Air
eliminates the risk of misusing the framework
and accidentally hurting performance instead of
improving it, and allows less skilled and novice
developers to use it and increase competition,

which is one of the main driving forces in
today’s mobile application market.

(iii) Performance improvement through cloud
computing. As the main focus of Think Air, we
aim to improve both Computational
performance and power efficiency of mobile
devices by bridging smart phones to the cloud.
If this bridge becomes ubiquitous, it serves as a
stepping stone towards more sophisticated
software.

(iv) Dynamic scaling of computational power.
To satisfy the customer’s performance
requirements for commercial grade service,
Think Air explores the possibility of
dynamically scaling the computational power at
the server side as well

Overview of Mobile cloud computing

V. COMPILATION AND EXECUTION

In this section we describe in detail the process
by which a developer writes code to make use
of Mobile cloud computing, covering the
programmer API and the compiler, followed by
the execution flow.

A. Programmer API
Since the execution environment is accessed
indirectly by the developer, Think Air provides
a simple library that, coupled with the compiler
support, makes the programmer’s job very
straightforward: any method to be considered
for offloading is annotated with remote

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
108

This simple step provides enough information
to enable the Think Air code generator to be
executed against the modified code. This takes
the source file and generates necessary remote
able method wrappers and utility functions,
making it ready for use with the framework -
method invocation is done via the Execution
Controller, which detects if a given method is a
candidate for offloading and handles all the
associated profiling, decision making and and
communication with the application server
without the developer needing to be aware of
the details.
B. Compiler
A key part of the Think Air framework, the
compiler comes in two parts: the Remote able
Code Generator and the Customized Native
Development Kit (NDK). The Remote able
Code Generator is a tool that translates the
annotated code as described above. Most
current mobile platforms provide support for
execution of native code for the performance
critical parts of applications, but cloud
execution tends to be on x86 hosts, while most
Smartphone devices are ARM-based, therefore
the Customized NDK exists to provide native
code support on the cloud.
C . Execution Controller
The Execution Controller drives the execution
of remote able methods. It decides whether to
offload execution of a particular method, or to
allow it to continue locally on the phone. The
decision depends on data collected about the
current environment as well as that learnt from
past executions.
When a method is encountered for the first
time, it is unknown to the Execution Controller
and so the decision is based only on
environmental parameters such as network
quality: for example, if the connection is of type
WiFi, and the quality of connectivity is good,
the controller is likely to offload the method. At
the same time, the profilers start collecting data.
On a low quality connection, however, the
method is likely to be executed locally.
D. Execution flow
On the phone, the Execution Controller first
starts the Profilers to provide data for future
invocations. It then decides whether this
invocation of the method should be offloaded or
not. If not, then the execution continues
normally on the phone. If it is, Java reflection is
used to do so and the calling object is sent to the
application server in the cloud; the phone then

waits for results, and any modified local state,
to be returned. If the connection fails for any
reason during remote execution, the framework
falls back to local execution, discarding any
data collected by the profiler. At the same time,
the Execution Controller initiates asynchronous
reconnection to the server.
If an exception is thrown during the remote
execution of the method, it is passed back in the
results and re-thrown on the phone, so as not to
change the original flow of control.

V1. Application Server

The Mobile cloud computing Application
Server manages the cloud side of offloaded
code and is deliberately kept lightweight so that
it can be easily replicated. It is started
automatically when the remote Android OS is
booted, and consists of three main parts,
described below: a client handler, cloud
infrastructure, and an automatic parallelization
component.

A. Client Handler

The Client Handler executes the Think Air
communication protocol, managing connections
from clients, receiving and executing offloaded
code, and returning results.

To manage client connections, the Client
Handler registers when a new application, i.e., a
new instance of the Think Air Execution
Controller, connects. If the client application is
unknown to the application server, the Client
Handler retrieves the application from the
client, and loads any required class definitions
and native libraries. It also responds to
application level ping messages sent by the
Execution Controller to measure connection
latency.
Following the initial connection set up, the
server waits to receive execution requests from
the client. A request consists of necessary data:
containing object, requested method, parameter
types, parameters themselves, and a possible
request for extra computational power. If there
is no request for more computational power, the
Client Handler proceeds much as the client
would: the remote able method is called using
Java reflection and the result, or exception if
thrown, is sent back. There are some special

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
109

cases regarding exception handling in Think
Air, however. For example, if the exception is
an Out Of Memory Error, the Client Handler
does not send it to the client directly; instead, it
dynamically resumes a more the task to it. In
the case that the client asks for more clones to
powerful clone (a VM), delegates the task to it,
waits for the result and sends it back to the
client. Similarly, if the client explicitly asks for
more computational power, the Client Handler
resumes a more powerful clone and delegates
the the task to it. In the case that the client asks
for more clones to execute its task in parallel,
the Client Handler resumes needed clones,
distributes the task among them, collects and
sends results back to the client. Along with the
return value, the Client Handler also sends
profiling data for future offloading decisions
made by the Execution Controller at the client
side.

B. Cloud Infrastructure
To make the cloud infrastructure easily
maintainable and to keep the execution
environment homogeneous, e.g., w.r.t. the
Android-specific Java bytecode format, we use
a virtualization environment allowing the
system to be deployed where needed, whether
on a private or commercial cloud. There are
many suitable virtualization platforms available,
e.g., Xen , QEMU , and Oracle’s VirtualBox. In
our evaluation we run the Android x86 port 2
on VirtualBox . To reduce its memory and
storage demand, we build a customized version
of Android x86, leaving out unnecessary
components such as the user interface and built-
in standard applications.

 Our system has 6 types of VMs with different
configurations of CPU and memory.The VM
manager can automatically scale the
computational power of the VMs and allocate
more than one VMs for a task depending on
user requirements. The default setting for

computation is only one VM with 1 CPU,
512MB memory, and 100MB heap size, which
clones the data and applications of the phone
and we call it the primary server. The primary
server is always online, waiting for the phoneto
connect to it. The second type of VMs can be of
any configuration which in general does not
clone the data and applications of a specific
phone and can be allocated to any user on
demand - we call them the secondary servers.
The secondary servers can be in any of these
three states: powered-off, paused, or running.
When a VM is in powered-off state, it is not
allocated any resources. The VM in paused state
is allocated the configured amount of memory,
but does not consume any CPU cycles. In the
running state the VM is allocated the configured
amount of memory and also makes use of CPU.

VII. USER CENTRIC MOBILE CLOUD
COMPUTING
 The next-generation MCC applications demand
tight integration of the physical and virtual
functions running on the mobile devices and
cloud servers, respectively. Moreover, due to
the mobility of mobile users and changes in the
application running environment, the MCC
application functions are not fixed on their
running hosts.

VIII. CONCLUSION
Mobile applications will require the computing
resources of mobile devices as well as the
servers in a data center in the cloud Therefore,
the mobile cloud service providers have to
provide both radio and computing resources and
jointly optimize them to achieve the maximum
revenue For revenue management (i.e., to
divide the revenue obtained from the resource
pool among cooperative providers) the concepts
of core and Shapley value from the cooperative
game theory have been applied. Optimization
models is used to determine the decision of

providers to support users to run application
instances utilizing resources in the pool.

REFERENCES
[1] Rakpong Kaewpuang, Dusit Niyato,

Member, IEEE, Ping Wang, Member,
IEEE, and Ekram Hossain, Senior
Member, IEEE “A Framework for
Cooperative Resource Management in
Mobile Cloud Computing” IEEE
JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS, VOL. 31, NO.
12, DECEMBER 2013

[2] Shuang Chen, Yanzhi Wang, Massoud
Pedram “
A Semi-Markovian Decision Process
Based Control Method for Offloading
Tasks from Mobile Devices to the
Cloud” Globecom 2013 - Symposium
on Selected Areas in Communications
pg no 2885-2890.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
110

[3] K. Kumar and Y. Lu, “Cloud
computing for mobile users: Can
offloading computation save energy?,”
Computer, vol. 43, no. 4, pp. 51–56,
2010.

[4] H. T. Dinh, C. Lee, D. Niyato, and P.
Wang, “A survey of mobilecloud
computing:Architecture, applications,
and approaches,” Wireless
Communications and Mobile
Computing (WCMC), 2011. Z. Li, C.
Wang, and R. Xu, “Computation
offloading to save

[5] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu,
“A game theoretic resource allocation
for overall energy minimization in
mobile cloud computing system,” in

Proceedings of the 2012 ACM/IEEE
international symposium on Low power
electronics and design, ser. ISLPED ’12.
NewYork, NY, USA: ACM, 2012, pp.
279–284.

[6] X. Gu, K. Nahrstedt, A. Messer, I.
Greenberg, and D. Milojicic,“Adaptive
offloading inference for delivering
applications in pervasive computing
environments,” in Per Com, 2003, pp.
107–114.

[7] Byung-Gon Chun, Sunghwan Ihm,
Petros Maniatis, Mayur Naik, and
Ashwin Patti. Clonecloud: “Elastic
execution between mobile device and
cloud”. In Proc. of EuroSys, 2011

