

PRIVACY AND SECURITY OF INSIDER THREATS IN CLOUD -CURRENT TRENDS, DETECTION AND CHALLENGES - A REVIEW

Deepthi Bolukonda

Research Scholar, Dept. of Computer Science and Engineering Jawaharlal Nehru Technological University, Hyderabad, India, 500085 deepthiraya@gmail.com Assistant Professor, Dept. of Computer Science and Engineering Chaitanya Bharathi Institute of Technology Gandipet, Hyderabad, India, 500075 Vijaya Kumari Gunta

Professor, Dept. of Computer Science and Engineering Jawaharlal Nehru Technological University,Hyderabad, India, 500085 vijayakumari.gunta@gmail.com

Abstract

Insider threat refers to the risk caused to an organization's security, assets, or data by individuals who have authorized access to such employees, these resources, as contractors, or partners. The aim of an insider threat is usually to exploit their access to sensitive information or systems to carry out malicious activities, such as stealing intellectual property, financial data, or sensitive information, sabotaging systems, or processes, or committing fraud. This systematic literature analyzed the anatomy of insider threat, including its trends and mode of attacks to find the possible solutions by querying various academic literature. Sources of insider threat dataset are revealed in this review paper to ease the challenges of researchers in getting access to insider datasets. In addition, a taxonomy of insider threat current trends is presented in the paper. This review can serve as a benchmark for researchers in proposing a novel insider threat detection methodology and starting point for novice researchers. The study also includes a classification of current trends in insider risk. This review can provide as a starting point for new researchers and a standard for scholars who are proposing new insider threat detection methodologies.

Keywords: Insider Threat; Insider Threat Trends; Insider Threat detection

Introduction

Insider threat is the term used to describe the risk posed to the security, resources, or data of an organization by those who have been granted permission to use these resources, such as employees, partners, or contractors. Insiders perform may acts that threaten the organization's security intentionally or accidentally, such as stealing confidential information, disrupting operations, or merely making mistakes. Because insiders frequently have deep knowledge of the organization's vulnerabilities and resources, insider threats are particularly harmful and facilitating their ability to conduct attacks or avoid identify (Greitzer Deborah A., 2010).

Insider risks can take many different shapes, including physical harm, espionage, sabotage, theft, and cybercrime. In more depth, violence can refer to actions that provoke hostility or abuse, whereas espionage can be defined as the use of covert methods to gather information for purposes of military, political, or economic benefit. Sabotage entails deliberate measures to undermine an organization's physical and digital infrastructure, whereas theft can involve the unauthoritative seizure of cash or intellectual property. Theft, espionage, violence, and sabotage related to technology, devices, or the

internet are the final types of cyber actions. While purposeful threats are malicious activities that use technological means to interrupt ordinary corporate operations, get protected information, or carry out an attack strategy, unintentional risks can also result from the nonmalicious exposure of IT infrastructure (CISA, 2022).

An insider threat typically aims to use their access to private data or systems to carry out harmful acts including stealing confidential information, financial data, or intellectual property, destroying systems or processes, or engaging in fraud. The insider danger may occasionally be driven by selfish interests, retaliation, ideology, or just plain carelessness. A serious insider threat may have negative effects on the organization's finances. reputation, and legal standing. Therefore, in order to identify, stop, and reduce the danger of insider threats, organisations need to put in place adequate security measures.

Researchers have been working to discover an effective solution to attacks being carried out by the insider threat as a result of the rise in insider threat incidents (Axelrad et al., 2013; J Liu et al., 2023; M Singh et al., 2023). Therefore, it is anticipated that the suggested solutions will significantly lessen its harmful effects, decrease false alarms, and raise its detection rate.

Finding a solution to the insider threat led to a flood of insider threat analysis in the literature. Despite the fact that researchers have made significant efforts (Axelrad et al., 2013; Michael and Eloff, 2019; Pal et al., 2023; Prasad et al., 2009; Sharma et al., 2020), a permanent solution to the insider danger has not yet materialised.

Insider danger has been the subject of prior systematic reviews in the literature. But the primary problem with those earlier analyses was that they largely focused on insider danger in the healthcare sector and certain other particular fields.

In this study, we propose to do an exhaustive, systematic assessment of all analyses done on insider threat activities, including its assault model, types, detection, and environment protection. The goal of this literature review is to provide an in-depth knowledge of the attack mode, organisational structure, and behaviour of various insider threats, to comprehend the causes of insider threats' growth, and to see what insider threat experts and researchers are saying and doing to put a limit in their excessive behaviour. The following are the paper's main contributions:

1. We looked at the criteria used to assess insider threat attacks and detection systems.

2. For a future investigation of the structure of insider threats, we tabulated and summarised all research datasets that were available.

3. We give a thorough analysis of insider threat detection techniques in the literature.

Literature Review:

Insider threats and their identification were thoroughly reviewed by the authors (AP Singh and Sharma, 2022) who also highlighted the key categories and techniques for minimizing insider threat attacks.

(Al-mhiqani et al., 2020) provide a classification of modern insider types, access, level, motivation, insider profiling, effect security properties, and methods used by attackers to conduct attacks as well as analysedbehaviours, machine-learning techniques, dataset, detection methodology, and evaluation metrics. The number of publications in each database source taken into consideration for the systematic review is shown.

(Kim et al., 2020) conducted research on how insider threat data should be gathered and used in the industry to detect insider risks in the Internet of Things (IoT) environment. They reviewed insider threat detection methodologies.

S Yuan and Wu's poll from 2021 regarding the use of deep learning strategies for detecting insider threats, a discussion of recent advancements and probable future directions in insider threat detection using deep learning, as well as an application of this technology to the detection of anomalies and the identification and categorization of difficulties.

The authors of the paper (Kim et al., 2019) examined the various insider threats based on insider characteristics and insider activities,

explored the sensors that make it possible to detect insider threats in an automated way, and examined the public datasets available for research. By doing so, they gave readers a systematic understanding of the prior literature that addresses the problems with insider threat detection.

A systematic evaluation of insider threat detection was undertaken by Walker-Roberts et al. (2018), but the review's scope was limited to insider threats to critical infrastructures in the healthcare industry.

2017's (Nazir Shushma; Patel, Dilip) thorough study on modelling, simulation, and associated methods that have been employed to evaluate the susceptibility of the supervisory control and data acquisition (SCADA) system to cyberattacks was made available.

A distributed, automated detection system with a centralized repository was proposed in the research effort by Rose et al. (2017). (Jiang et al., 2016) conducted a survey on the machine-learning approaches that can be used to a variety of computer security areas, such as intrusion detection systems, software security, security policy management, malware identification, and malware mitigation.

Insider threat detection methods are further broken down into nine classes in a study (Sanzgiri and Dasgupta, 2016): anomaly-based approaches, role-based access control, scenariobased techniques, decoy documents and honeypot techniques, risk analysis using psychological factors, risk analysis using workflow, improving network defense. improving defense by access control, and process control to deter insiders.

The research by (Gheyas Ali E. et al., 2016) indicated that the dataset-game theory approach (GTA), feature-insider's online behavior's, and algorithm-graph algorithm were the three most prominent research topics in the area.

S. No.	Reference	No of references cove	ered
1	(Velayudhan et al., 2023)	15	
2	(AP Singh and Sharma, 2022)	14	
3	(S Yuan and Wu, 2021)	17	
4	(Al-mhiqani et al., 2020)	13	
5	(Kim et al., 2020)	11	
6	(Homoliak et al., 2019)	12	
7	(Kim et al., 2019)	14	
8	(Walker-Roberts et al., 2018)	16	
9	(L Liu et al., 2018)	18	
10	(NazirShushma; Patel, Dilip, 2017)	15	
11	(Rose et al., 2017)	15	
12	(H Jiang et al., 2016)	17	
13	(Sanzgiri and Dasgupta, 2016)	19	
14	(Gheyas Ali E. et al., 2016)	14	
15	(Azaria Ariella; Kraus, Sarit; Subrahman	ian, V. S. et al., 2014)	13

Table 1: Related Surveys on Insider Threat

III. METHODOLOGY

The research methodology section outlines the procedures used to review the previous publications on insider threat attack and detection systems. We also describe how the current studies were chosen using a set of inclusion and exclusion criteria.

3.1 Study Protocol and Phases

In the course of conducting this review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (Moher et al., 2009) and the established standards in the work of (Kitchenham et al., 2009) were adopted. 3.2 Sources for Search and Data To find relevant material on insider threat and defence strategies, several databases were searched. The publications underwent thorough examination using several methods to identify primary research. As indicated in Table 2, the research methodology used for this article involved searching through pertinent papers from numerous academic databases, including ACM Digital Library, IEEE Xplore, Science Direct, Springer, Taylor & Francis, Web of Science, and Wiley Online Library.

S. No.	Database Name	No of Article
1	IEEE Xplore	103
2	ScienceDirect	156
3	Springer	98
4	Taylor & Francis	54
5	Web of Science	12
6	Wiley Online Library	56
7	ACM Digital Library	60
		Total 539

Table 2: Search Database Sources

IV. INSIDER THREAT DETECTION TECHNIQUE SYNTHESES

Table 3: Syntheses of Insider Threat Detection Techniques

S /	Referenc	Techniques	Problem	Results/Finding	Limitation	Dataset
Ν	e	_	Addressed	S		
1	(Haq et	Long Short-	the paper	Word2ve was	The volume	Enron
	al., 2022)	Term	addresses the	the lowest	of data was	corps,
		Memorymodels	limitations in	accuracy rate at	quite high;	CERT
		integrated with	detecting	73.4% and	which makes	
		Google's	insider threats,	GLoVe was	computation	
		Word2vec and	by developing	slightly better at	complex. The	
		GLoVe (Global	models for	74.58% with a	literature	
		Vectors for	detecting	loss value of	focus on an	
		Word	insider threats	1.167 for	insider threat	
		Representation)	using a real	GLoVe and	dataset that is	
			dataset, high	1.156 for	more of an	
			accuracy, and	Word2ve	email	
			significantly		corporate	
			lower false		fraud.	
			alarm rate			

INT	ERNATIONA	AL JOURNAL OF CU	URRENT ENGINE	ERING AND SCIENT	TIFIC RESEARCE	I (IJCESR)
2	(Zhang et al., 2021)	TF-IDF + Over Booting + Self Supervised.	The paper addresses the problem of detecting insider threats in computer networks by improving the effectiveness of insider threat detection and mitigate the damage caused by insider attacks		The paper does not provide a detailed analysis of the proposed method, which may be a concern for largescale deployments	CERT
3	(D Sun and Wang, 2021)	The paper Proposed a framework called DeepMIT which utilize Recurrent Neural Network (RNN), and user-attributes as categorical features	The paper addresses the issues of insider threats	recorded for Recall, 91.6%	The paper does not address the issue of false negatives	CERT
4	(Li et al., 2021)	The techniques used in this	It addresses the problem of an approach that converts the unsupervised anomaly detection problem into a supervised image classification problem, thereby reducing the complexity of the detection process.		The proposed method may not be suitable for detecting advanced insider threats that involve sophisticated attack techniques.	D
5	(Nasir et al., 2021)	This paper used LSTM- Autoencoder as the algorithm	The paper addresses the problem of insider threat detection in networked systems of companies and	Thepaperaddressestheproblemofinsiderthreatdetectioninnetworkedsystemssystemsofcompaniesand	The performance is dependent on the quality and quantity of the data used for training and	CERT

			government	government	testing	
			agencies.	agencies.	0	
6	(Wei et al., 2021)	Proposed a novel unsupervised anomaly detection scheme based on cascaded autoencoders (CAEs) and joint optimization network.	The paper addresses the problem of detecting insider threats via a proactive forensic investigation framework.	0.938 was recorded for Recall, 0.926 for precision and 0.932 for f1 score	No accuracy rate is recorded.	CERT
7	(Ma and Rastogi, 2020)	The paper Proposed a novel approach that uses system logs to detect insider behaviour using a special recurrent neural network (RNN) model involving modelling system logs as a natural language sequence and extracting patterns from these sequences.	The paper addresses the problem of insider threat detection in information communicatio n technology to successfully detect only known types of anomalies from the log entries	model achieved a 93%	Relies on system logs to detect insider behaviour, and the proposed approach may require significant computationa 1 resources to process large amounts of system logs	Enron corps
8	(Schuartz et al., 2020)	The authors have presented a large data stream detection and analysis distributed platform for detecting threats on the internet. The platform uses machine learning techniques for dimensionality reduction.	The problem addressed in this research is the detection of threats on the internet and the prevention of such attacks from occurring through the analysis of patterns and behaviour of the data stream in the network.	The results show that the model can achieved 90% accuracy rate	The paper does not provide information on the scalability of the proposed platform	CERT

_					IFIC RESEARCE	· · · ·
9	(Sharma	The technique	The paper	The	High building	NSLKD
	et al.,	involves the use	addresses the	experimental	features	D
	2020)	of LSTM-based	problem of	results show	might lead to	
		Autoencoder to	identifying	that the model	missing some	
		model user	anomalies	produced an	key	
		behaviour	from log data	Accuracy of	information	
		based on	for insider	90.17%, True	and does not	
		session	threat	Positives of	discuss the	
		activities while	detection	91.03%, and	scalability of	
		following a		False Positives	the proposed	
		two-step		of 9.84%.	technique for	
		process of		01 9.0 170.	large datasets	
		calculating the			iaige datasets	
		reconstruction				
		error using the				
		0				
1		auto encoder on				
1		the non-				
1		anomalous				
		dataset and then				
1		using it to				
1		define the				
		threshold to				
		separate the				
		outliers from				
		the normal data				
		points				
10	(J Jiang	Random Forest	Graph	94.5% and	94.5% and	CERT
	et al.,		Convolutional	83.3% were	83.3% were	
	2019)		Networks.	recorded for	recorded for	
				accuracy and	accuracy and	
				recall.	recall.	
11	(Lin et	The paper	The paper	87.79% was	Cannot	NSLKD
	al., 2017)		addresses the		handle	D
	, ,	hybrid model				
		based on the	existing work	and 12.18% for		
		deep belief	that mainly	the false	a large	
1		network (DBN)	focused on the	positive rate	number of	
1		and One-Class	single pattern	r	false alarms.	
		SVM	analysis of		-mot unumino.	
		(OCSVM) to	user			
		detect insider	singledomain			
		threat. The	behavior, so as			
		DBN is used to	to improve the			
		extract hidden	accuracy rate.			
		features from	accuracy rate.			
		the multi-				
1		domain feature				
		extracted by the				
		audit logs, and				
		the OCSVM is				
		trained from the				
		features learned				
		by the DBN				

V. CHALLENGES AND FUTURE SCOPE

Despite the fact that there have been numerous researchers and solutions developed over the years, the average global cost of insider threat incidents has increased over the last two years, rising from \$8.76 million in 2018 to \$15.4 million in 2022. Negligent insiders account for 56% of all incidents and cost an average of \$484,931 per incident (Ponemon Institute, 2022). This is not a result of a lack of answers, but rather of obstacles that stop such solutions from working effectively, such as technological advancements, the sheer number of devices that are connected, and the lack of expertise among employers and employees.

An efficient method of detecting insider threats should be able to do so in real time while also ensuring that false alarms don't lower the rate of detection accuracy.

Machine learning can undoubtedly help with insider threat detection, but the effectiveness of each method will ultimately depend on the quantity, quality, and design of the dataset used in the experiment.

When all logs are taken into account and the danger level is continuously updated, any detection technique should be able to produce results that are comparable even when the environment changes. To provide predictive capabilities of insider threat identification, this detection system should make use of a method of dynamic and reliable behavior forecasting analysis combined with intelligent machine learning.

Preventing employees from bringing in or using private devices to access information within the company is one of the most effective measures against insider threat. Real-time monitoring should be used in combination with this.

VI.CONCLUSIONS

In order to help beginner researchers interested in insider danger, we give in this study a thorough evaluation of insider threat detection mechanisms from 2010 to 2023.

Techniques for detecting insider threats have been looked at, researched, and surveyed for this reason. Future study is anticipated to determine the most practical and efficient detection method to counter insider threat.

REFERENCES

[1]. Al-mhiqani, M. N., Ahmad, R., Abidin, Z. Z., Yassin, W., Hassan, A., Abdulkareem, K. H., Ali, N. S., &Yunos, Z. (2020). A Review of Insider Threat Detection:Classification, Machine Learning Techniques,Datasets, Open Challenges, and Recommendations. Applied Sciences, 10(15).

https://doi.org/10.3390/app10155208

[2]. Alahmadi, B. A., Legg, P. A., & Nurse, J. R. C. (2015). Using internet activity profiling for insiderthreat detection. ICEIS 2015 - 17th International Conference on Enterprise Information Systems, Proceedings, 2, 709–720. https://doi.org/10.5220/0005480407090720

[3]. Alguliev, R., &Abdullaeva, F. (2014). Illegal Access Detection in the Cloud Computing Environment. Journal of Information Security, 05(02), 65–71. https://doi.org/10.4236/jis.2014.52007

[4]. Axelrad, E. T., Sticha, P. J., Brdiczka, O., & Shen, J. (2013). A Bayesian network model for predicting insider threats. Proceedings -IEEE CS Security and Privacy Workshops, SPW 2013, 82–89. https://doi.org/10.1109/SPW.2013.35

[5]. Azaria Ariella; Kraus, Sarit; Subrahmanian, V. S., A. R., Azaria, A., Richardson, A., Kraus, S., &Subrahmanian, V. S. (2014). Behavioral Analysis of Insider Threat: A Survey and Bootstrapped Prediction in Imbalanced Data. IEEE Transactions on Computational Social Systems, 1(2), 135–155. https://doi.org/10.1109/TCSS.2014.2377811

[6]. Bin Ahmad, M., Akram, A., Asif, M., & Ur-Rehman, S. (2014). Using genetic algorithm to minimize false alarms in insider threats detection of information misuse in windows environment. Mathematical Problems in Engineering, 2014(i). https://doi.org/10.1155/2014/179109

[7]. Bose Bhargav R.; Tirthapura, Srikanta; Chung, Yung-Yu; Steiner, Donald, B. D. . A. (2017). Detecting Insider Threats Using RADISH: A System for Real-Time Anomaly Detection in Heterogeneous Data Streams. IEEE Systems Journal, 11(2), 471–482. https://doi.org/10.1109/jsyst.2016.2558507

[8]. CISA. (2022). Defining Insider Threats | CISA. Webpage. https://www.cisa.gov/defining-insiderthreats

[9]. Elmrabit, N., Yang, S. H., Yang, L., & Zhou, H. (2020). Insider Threat Risk Prediction based on Bayesian Network. Computers and Security, 96.

https://doi.org/10.1016/j.cose.2020.101908

[10].Elmrabit, N., Zhou, F., Li, F., & Zhou, H. (2020, June 1). Evaluation of Machine Learning Algorithms for Anomaly Detection. International Conference on Cyber Security and Protection of Digital Services, Cyber Security 2020.

https://doi.org/10.1109/CyberSecurity49315.20 20.9138871

[11].Ferreira, P., Le, D. C., &Zincir-Heywood, N. (2019). Exploring Feature Normalization and Temporal Information for Machine Learning Based Insider Threat Detection. 15th International Conference on Network and Service Management, CNSM 2019. https://doi.org/10.23919/CNSM46954.2019.901 2708

[12].Gamachchi, A., &Boztaş, S. (2017). Insider Threat Detection Through Attributed Graph Clustering. 2017 IEEE Trustcom/BigDataSE/ICESS, 112–119.

[13].Gavai, G., Sricharan, K., Gunning, D., Hanley, J., Singhal, M., & Rolleston, R. (2015). Detecting insider threat from enterprise social and online activity data. MIST 2015 -Proceedings of the 7th ACM CCS International Workshop on Managing Insider Security Threats, Co-Located with CCS 2015, 13– 20. https://doi.org/10.1145/2808783.2808784

[14].Gheyas Ali E., I. A. A., Gheyas, I. A., & Abdallah, A. E. (2016). Detection and prediction of insider threats to cyber security: a systematic literature review and meta-analysis. Big Data Analytics, 1(1), 1– 29. https://doi.org/10.1186/s41044-016-0006-0

[15].Goldberg, H. G., Young, W. T., Reardon, M. G., Phillips, B. J., & Senator, T. E. (2017). Insider Threat Detection in PRODIGAL. Hawaii International Conference on System Sciences. https://www.forcepoint.com

[16].Greitzer Deborah A., F. L. . F. (2010). Insider Threats in Cyber Security - Combining Traditional Cyber Security Audit Data with Psychosocial Data: Towards Predictive Modeling for Insider Threat Mitigation. In Insider Threats in Cyber Security (Vol. 49, Issue NA). https://doi.org/10.1007/978-1-4419-7133-3_5

[17].Ha, D., &Ryu, K. K. Y. (2017).: RNN Autoencoder Detecting Insider Threat Based on Machine Learning: Anomaly Detection Using RNN Autoencoder. Journal of the Korea Institute of Information Security and Cryptology, 27(4), 763–773.

[18].Haidar, D., & Gaber, M. M. (2018). Adaptive One-Class Ensemble-based Anomaly Detection: An Application to Insider Threats. Proceedings of the International Joint Conference on Neural Networks, 2018-July. https://doi.org/10.1109/IJCNN.2018.8489107

[19].Haq, M. A., Khan, M. A. R., &Alshehri, M. (2022). Insider Threat Detection Based on NLP Word Embedding and Machine Learning. Intelligent Automation and Soft Computing, 33(1), 619–635. https://doi.org/10.32604/iasc.2022.021430

[20].Homoliak, I., Toffalini, F., Guarnizo, J., Elovici, Y., Ochoa, M., Homoliak Flavio; Guarnizo, Juan; Elovici, Yuval; Ochoa, Martín, I. T., Homoliak, I., Toffalini, F., Guarnizo, J., Elovici, Y., & Ochoa, M. (2019). Insight into insiders and IT: A survey of insider threat taxonomies, analysis, modeling, and countermeasures. ACM Computing Surveys, 52(2), 30–40. https://doi.org/10.1145/3303771

[21].Igbe, O., &Saadawi, T. (2018). Insider Threat Detection using an Artificial Immune system Algorithm. 2018 9th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2018, November, 297–302. https://doi.org/10.1109/UEMCON.2018.879658 3

[22].Jiang, H., Nagra, J., &Ahammad, P. (2016). SoK: Applying Machine Learning in Security - A Survey. http://arxiv.org/abs/1611.03186

[23].Jiang, J., Chen, J., Gu, T., Choo, K.-K. R., Liu, C., Yu, M., Huang, W., Mohapatra, P., Raymond Choo, K.-K., Liu, C., Yu, M., Huang, W., &Mohapatra, P. (2019). Anomaly Detection

with Graph Convolutional Networks for Insider Threat and Fraud Detection. In IEEE Military Communications Conference. https://doi.org/10.1109/MILCOM47813.2019.9 020760

[24].Kim, A., Oh, J., Ryu, J., Lee, J., Kwon, K., & Lee, K. (2019). SoK: A systematic review of insider threat detection. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 10(4), 46–67. https://doi.org/10.22667/JOWUA.2019.12.31.0 46

[25].Kim, A., Oh, J., Ryu, J., & Lee, K. (2020). A review of insider threat detection approaches with IoT perspective. IEEE Access, 8, 78847– 78867.

https://doi.org/10.1109/ACCESS.2020.2990195

[26].Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/https://doi.org/10.1016/j.infsof.2 008.09.009

[27].Le, D. C., &NurZincir-Heywood, A. (2019). Machine learning based insider threat modelling and detection. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management, IM 2019, 1–6.

[28].Le, D. C., &Zincir-Heywood, N. (2020). Exploring Adversarial Properties of Insider Threat Detection. 2020 IEEE Conference on Communications and Network Security, CNS 2020.

https://doi.org/10.1109/CNS48642.2020.916225 4

[29].Le, D. C., &Zincir-Heywood, N. (2021). Exploring anomalous behaviour detection and classification for insider threat identification. International Journal of Network Management, 31(4), 1–19. https://doi.org/10.1002/nem.2109

[30].Le, D. C., Zincir-Heywood, N., & Heywood, M. I. (2020). Analyzing Data Granularity Levels for Insider Threat Detection Using Machine Learning. IEEE Transactions on Network and Service Management, 17(1), 30– 44.

https://doi.org/10.1109/TNSM.2020.2967721

[31].Legg Oliver; Goldsmith, Michael; Creese, Sadie, P. A. B., Legg, P. A., Buckley, O., Goldsmith, M., Creese, S., Legg Oliver; Goldsmith, Michael; Creese, Sadie, P. A. B., Legg, P. A., Buckley, O., Goldsmith, M., &Creese, S. (2017). Automated Insider Threat Detection System Using User and RoleBased Profile Assessment. IEEE Systems Journal, 11(2), 503–512.

https://doi.org/10.1109/jsyst.2015.2438442

[32].Legg, P. A., Buckley, O., Goldsmith, M., &Creese, S. (2016). Caught in the act of an insider attack: detection and assessment of insider threat. 1–6. https://doi.org/10.1109/ths.2015.7446229

[33].Li, D., Yang, L., Zhang, H., Wang, X., Ma, L., & Xiao, J. (2021). Image-Based Insider Threat

[33].Velayudhan, D., Hassan, T., Damiani, E., &Werghi, N. (2023). Recent Advances in Baggage Threat

Detection: A Comprehensive and Systematic Survey. ACM Computing Surveys, 55(8), 1–38. https://doi.org/10.1145/3549932