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Abstract — The underutilised portion of 
the wireless spectrum will need to be better 
utilised due to the expected exponential 
growth in traffic volume in 5G-based 
networks. Apps for smartphones have 
caused an increase in data traffic on cell 
phone networks recently. As a result, 
expanding the network's capacity to 
accommodate new applications and services 
is critical. D2D communication with multiple 
hops requires more nodes for data 
transmission, especially when cooperatively-
operated relays are used. Long-Term 
Evolution (LTE) is the most recent and most 
technologically advanced cell phone 
technology that is about to be introduced to 
the market. LTE and its advanced version 
appear to be an appealing solution for many 
businesses since they offer exceptional peak 
data speeds in both the uplink and downlink 
directions. Public safety communications is 
currently one of the fastest-growing fields in 
the world. In accordance with two 
homogeneous Poisson Point Processes, 
beacon-enabled and simple LTE terminals 
are dispersed in the vicinity of a significant 
event. This research looks into direct-to-
device (D2D) communications. In this paper, 
we explore the likelihood of LTE mobile 
terminals forming in D2D networks using a 
stochastic geometry technique, and we then 
build an unique D2D protocol. 

Keywords—LTE, Machine Learning, 
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I. INTRODUCTION 
The term "cognitive radio" (CR) has been 

used to characterise radio systems that are 
capable of learning and adapting to their 
environment [1]. Knowledge and 
comprehension are acquired by cognoscere (to 
know), which is Latin for "to know." Acquiring 
knowledge and comprehension, which includes 
thinking, knowing, remembering, judging, and 
problem solving (cognition), is defined by 
cognoscere (to know). Self-programming, often 
known as autonomous learning, is a key 
component of all CR systems. [4] and [5]. In 
accordance with [6,] Haykin predicted that CRs 
would be brain-enhanced wireless devices 
whose goal would be to improve the utilisation 
of the electromagnetic spectrum. Haykin adopts 
an understanding-by-building strategy, which is 
intended to achieve two key goals: dependable 
communications and efficient spectrum use (or 
utilisation of available spectrum). [6]. It was 
with this new interpretation of CRs that the 
dynamic spectrum sharing (DSS) period began, 
with the goal of improving the utilisation of the 
crowded radio frequency spectrum. Evolution 
of a number of communications and signal 
processing techniques was demanded by the 
development of DSA networks [6–38]. The 
underlay, overlay, and interweave paradigms 
were used for secondary CRs in licenced 
spectrum bands, and they were all used in 
conjunction with each other. In order to carry 
out its cognitive duties, a CR must be aware of 
its radio frequency environment. It should be 
capable of detecting and distinguishing between 
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all sorts of radio frequency (RF) activity in its 
immediate vicinity. As a result, it was 
discovered that spectrum sensing is an 
important component of CRs. A slew of new 
sensing approaches have been developed during 
the previous decade, including the matching 
filter, energy detection, cyclostationary 
detection, wavelet detection, and covariance 
detection [30, [41]–[46], among others. It has 
been proposed in [15], [33], [34], [42], [47]–
[49] that cooperative spectrum sensing could 
improve the accuracy of wireless network 
sensing by addressing the hidden terminal 
problems that are inherent in wireless networks. 
Cooperative spectrum sensing has been 
proposed in [15], [33], [34], [42], [47]–[49]. 
cooperative CRs have also been examined 
recently, according to the authors [50]–[53]. 
[41], [54], and [55] are some of the most recent 
surveys on CRs that have been conducted. [39] 
provides a complete evaluation of spectrum 
sensing approaches for CRs, which is available 
online. The DSA and MAC layer operations for 
the CRs are investigated in numerous surveys, 
according to [56–60]. In addition to being 
aware of its environment, a CR must be able to 
learn and reason in order to be considered 
cognitive in the true sense. ([1] In accordance 
with the pioneering idea of [2, the cognitive 
engine [63]–[68] has been designated as the 
heart of a CR. Coordination of the CR's actions 
is accomplished by machine learning methods 
implemented by the cognitive engine. Machine 
learning methods have just lately gained 
popularity when it comes to CRs [38–72]. The 
process of learning is required when the precise 
effects of inputs on the outputs of a particular 
system are not understood in advance. Because 
of this, learning approaches are required to 
predict the input-output function of the system 
in order to ensure that the system's inputs are 
optimised. In wireless communications, for 
example, non-ideal wireless channels may 
cause uncertainty due to the fact that they are 
not ideal. In order to predict the wireless 
channel characteristics and to establish the 
precise coding rate that is required to achieve a 
certain likelihood of error across a wireless link 
[69], learning approaches can be applied. [69, 
70] [69, 70] The problem of channel estimation 
is, according to [73], a comparatively simple 
one to tackle. Concerning cognitive radios 
(CRs) and cognitive radio networks (CRNs), 
the complexity of wireless systems rises with 

the introduction of highly reconfigurable 
software-defined radios, notably in the case of 
CRs and cognitive radio networks (CRNs) 
(SDRs). In this instance, a simple formula may 
not be able to calculate all of the setup 
parameters at the same time (for example, 
transmitting power, coding scheme, modulation 
scheme, sensing algorithm, communication 
protocol, sensing policy, and so on). This is due 
to the complex interplay between these 
components as well as the surrounding RF 
environment. This allows for the application of 
adaptive learning approaches that allow for 
efficient adaptation of CRs to their 
environment, but without the need for a 
thorough understanding of the relationship 
between these parameters [74]. 

According to some, threshold-learning 
algorithms, such as those described in [71] and 
[75], can be used to reconfigure spectrum 
sensing devices when they are operating under 
unknown conditions. In the case of diverse 
CRNs, the problem becomes far more difficult 
to manage. It is necessary for a CR not only to 
adapt to its environment, but also to coordinate 
its actions with the activities of other radios in 
the network while doing so. CRs are compelled 
to make educated guesses about what other 
nodes are up to as a result of the limited 
number of paths through which they can learn 
about their peers' behaviour. According to the 
DSA, for example, the CRs strive to access idle 
primary channels while avoiding clashes with 
both licenced and other secondary cognitive 
users. For example, in the case of Markov 
Decision Processes (MDPs), it is feasible that 
CRs operating in an unknown RF environment 
will be pushed to utilise unique decision-
making strategies, such as Dynamic 
Programming in the case of MDPs [76]. 
Specific learning techniques such as 
reinforcement learning (RL) [38, [74], and [77] 
can assist you in solving the MDP problem 
even if you do not know the transition 
probabilities of the Markov model at the outset. 
Because of the need for self-adaptation in an 
uncertain and diverse RF environment, as well 
as the requirement for reconfigurability in RF 
environments, learning algorithms may be 
implemented by CRs. It is possible to 
incorporate low-complexity learning algorithms 
into the system in order to further lower the 
overall complexity of the system. Several 
learning approaches, both supervised and 
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unsupervised, have been proposed for a range 
of learning tasks in recent research on CRs. 
These approaches include: [65], [78], and [79] 
[supervised learning], numerous researchers 
have examined CR applications that make use 
of neural networks and support vector machines 
(SVMs) for supervised learning in the context 
of [65], [78], and [79]. [80, 81] also discuss 
DSS applications for unsupervised learning, 
such as reinforcement learning, which have 
been addressed in the literature. In accordance 
with [77], the distributed Q-learning technique 
has been found to be successful in a variety of 
applications. The application of Q-learning to 
improve the identification and categorization of 
primary signals in the environment was 
demonstrated by CRs in [82]. Along with the 
examples in [14], [83]–[85], and others, there 
are countless additional instances in which RL 
has been used in conjunction with CRs as well. 
In [86], a weight-driven exploration technique 
was used to introduce new techniques to 
enhancing the efficiency of RL's performance, 
and the results were promising. When it comes 
to signal classification, it was proposed in [13] 
to use Bayesian non-parametric learning based 
on the Dirichlet process, which was later 
employed for signal classification [72]. Using 
an unsupervised learning strategy, such as that 
described in [87], it is possible to categorise 
signals, which is also beneficial for signal 
classification. RL algorithms, such as Q-
learning, have been shown to be beneficial 
when used in conjunction with autonomous 
unsupervised learning [88–91]. While their 
performance in non-Markovian and multiagent 
systems has been demonstrated [88–91], it has 
been proven to be inadequate. The 
methodologies of evolutionary learning [89], 
[92], imitation, instruction, and policy-gradient 
approaches have all been shown to outperform 
RL on certain difficulties when used in this 
environment. Many studies have proved that 
the policy-gradient approach is more efficient 
in partially observable settings than other 
approaches [90, 91], primarily because it 
searches directly for optimal policies within the 
policy space [90, 91]. Recent years have seen 
an increase in the number of studies conducted 
on multi-agent learning, which has implications 
for the development of learning algorithms for 
CRNs. Several studies have compared the 
behaviour of human civilizations that exhibit 
both individual and group behaviours to 

cognitive networks [95], and a strategic 
learning framework for cognitive networks has 
been proposed. [pages 94 and 95] [page 94] It 
was in [96] that adaptive learning in cognitive 
users during strategic interactions was 
originally proposed, employing an evolutionary 
game paradigm to explain how they learn. The 
distributed nature of CRNs, as well as their 
interactions with one another, must be taken 
into consideration while attempting to obtain 
effective learning approaches based on 
cooperative schemes. Individual nodes in a 
CRN are less likely to behave selfishly as a 
result of this. When dealing with scattered 
CRNs, coordination of actions is a key 
challenge [88]. [numbers 89 and 90]. Network-
wide policies that are centralised can be used to 
generate the greatest possible cooperative 
activities for the benefit of the entire network, 
hence maximising its overall efficiency. 
However, implementing centralised systems in 
a distributed network is not always feasible due 
to the nature of the network. The goal of 
cognitive nodes in distributed networks is to 
apply decentralised laws that ensure near-
optimal behaviour while simultaneously 
minimising communication costs, which is 
referred to as decentralisation. Knowing how to 
convey knowledge (i.e., teach) across a wireless 
media has been discussed in depth in [3] and 
[97], and it is based on the concept of "docitive 
networks," which is derived from the Latin 
word docere, which literally means "to instruct" 
(to teach). Docitive networks are designed to 
reduce cognitive complexity, accelerate 
learning, and generate better and more 
trustworthy judgements, among other things. 
Radios in a docitive network are able to learn 
from one another because they are exchanging 
information with one another. [3] The radios 
are meant to teach not only the end results, but 
also how to get there. It is possible for new 
radios in a docitive network to pick up certain 
policies from older radios. There is, of course, a 
communication overhead in the transfer of 
knowledge. However, as shown in [3] and [97], 
the policy improvement achieved through 
cooperative docitive behaviour compensates for 
this overhead. 

A new technology called cognitive radio 
(CR) can dynamically allocate spectrum to each 
device in order to maximise the capabilities of 
each one in low-bandwidth areas. There are 
devices that can be programmed to change their 
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frequency based on a programme, like 
software-defined radios (SDR). Dr. Joe Mitola 
at the University of Stockholm introduced 
cognitive radio in a research paper. Cell 
networks and handsets were designed to adapt 
their communication methods based on their 
immediate surroundings. Figure 3 depicts the 
behaviour in more detail. The Radio 
Knowledge Representation Language was 
designed to provide "a standard language 
within which such unanticipated data 
exchanges can be defined dynamically". This, 
in turn, could be used in cognitive radios to 
increase battery life and performance. System 
selection of "the most appropriate network 
based on user service requests" is another 
feature. Wi-Fi calling is a recent addition to 
mobile phones that incorporates this feature. 

II. PROPOSED DESIGN 

 
Figure 1 Design of multihop protocol 

Using multi-channel and multi-hop 
protocols, the efficiency of communication will 
be increased as shown in Figure 1. We can 
monitor online network dynamics from a 
remote location using a website or an Android 
app that connects to the system via wifi. 

 
Figure 2. Concept of Cognitive Cyles 

 

 
Figure 3. Proposed System concept Design 
 

In a number of studies [100-102], it has 
been demonstrated that machine learning may 
improve the performance of wireless networks. 
In an experimental testbed, it has been 
demonstrated that using a neural network to 
choose channels in IEEE 802.11 WLAN access 
points (APs) can boost throughput [103-105]. 
Despite the fact that this approach is intriguing, 
it only takes into consideration one AP at the 
time. However, rather of concentrating on a few 
key metrics (MTs), our strategy seeks to 
improve the overall system's performance. The 
proposed approach is depicted in action in Fig. 
3. Mobile terminals collect information about 
the radio environment and use it to develop a 
performance model that reflects the relationship 
between wireless parameters and throughput. 
This is accomplished through machine learning. 
Access points provide information about the 
throughput model to the cognitive controller, 
which is then used to make decisions. The 
cognitive controller is represented by the 
network reconfiguration manager. This system 
determines the wireless parameters for all MTs 
and transmits those parameters to the MTs 
through the access points. The wireless 
parameters are relayed to mobile terminals, 
which then adjust their settings in accordance 
with the new information. MTs collect 
information about the status and performance 
of the wireless network by repeating the cycle 
described above. As more training data is 
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collected, the performance of the network 
increases, resulting in a more accurate 
throughput model being produced. 
 

A. A machine learning-based approach to 
parameter optimization. 

ThisSystem follows the previous 
research in [5] by using support vector 
regression (SVR) as a learning algorithm. It is 
an analogue output version of support vector 
machines (SVMs) Function f can be expressed 
as follows in SVR. [99]. 

 

 
 

It is necessary to note that this equation 
contains two unknown input sets for the 
learning algorithm (p and z), as well as one 
unknown training sample input set (xi). The 
unknown parameters are obtained, according to 
[9], by the use of an optimization technique, 
with the training samples p, Z, and Y being 
used as the training samples. In order to 
establish the ideal wireless parameters p for the 
MTs, the cognitive controller must solve the 
following optimization problem for it to be 
success 

 

 
 
It can be expressed in terms of how 

many MTS there are and how many parameters 
each MTS can have. For example, for MTS-1, 
we can say that there are N possible parameter 
sets, while for MTS-2 we can say that there are 
N possible parameter sets for MTS-1 and MTS-
2. Consider the fairness of MTs when using the 
logarithmic utility function for throughput. 
When it comes to objective function, MTs with 
lower throughputs have larger gains compared 
to MTs with higher throughputs. Figure 4 
shows Probability a D-beacon is received 
correctly by a UE varying the probability (p) a 
b-UE is active for a threshold and Figure 5 
shows path loss exponent. 

 

 
Figure 4 Probability A D-beacon is 

appropriately received by a UE by altering the 
likelihood (p) that a b-UE is active for a 
threshold period of time. 

 
Figure 5 Path loss Exponent 

III. CONCLUSION 
Wireless communication quality has 

deteriorated as a result of the extensive use of 
mobile devices and the restricted availability of 
radio resources. It has been created cognitive 
radio technology in order to address these 
challenges. For the purpose of developing a 
wireless network optimization approach in this 
paper, we applied a machine learning algorithm 
based on the cognitive cycle. To put the 
proposed optimization approach through its 
paces, wireless LANs were deployed and the 
throughput performance was tested. Tests 
carried out in a real-world scenario 
demonstrated that the proposed strategy was 
effective. 
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