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Abstract 
Fourier was a mathematician in 1822. He 
gives Fourier series and Fourier transform to 
convert a signal into frequency domain. 
Fourier series simply states that, periodic 
signals can be represented into sum of sines 
and cosines when multiplied with a certain 
weight. We look at infinite series expansions 
for arithmetic functions, first considered by 
Srinivasa Ramanujan in 1918. A basis for 
these expansions is investigated, for which 
several properties are proven. Examples of 
these infinite series are established using 
multiple techniques. 
Keywords: Arithmetic, Ramanujan, Fourier 
series. 
Introduction 
In 1918 the Indian mathematician Srinivasa 
Ramanujan published a paper titled “On Certain 
Trigonometrical Sums and their Applications in 
the Theory of Numbers”[16] in which he 
studied sums of the form 

𝑐𝑐𝑞𝑞(𝑛𝑛) = � 2𝜋𝜋𝑛𝑛
𝑎𝑎
𝑞𝑞

𝑞𝑞

𝑎𝑎=1
(𝑎𝑎 ,𝑞𝑞)=1

 

where q and n are natural numbers and (a, q) is 
the greatest common divisor of a and q. More 
recently we consider equal sums, now called 
Ramanujan sums, of the form 

𝑐𝑐𝑞𝑞(𝑛𝑛) = � 𝑒𝑒2𝜋𝜋𝜋𝜋𝑛𝑛 𝑎𝑎𝑞𝑞

𝑞𝑞

𝑎𝑎=1
(𝑎𝑎 ,𝑞𝑞)=1

 

 
and for cleanliness of notation, we will write 

e(t) = 𝑒𝑒2𝜋𝜋𝜋𝜋 𝑎𝑎𝑞𝑞 for t ∈ R. 
An arithmetic function is a complex valued 
function defined on the set of natural numbers, 
the most useful of which express some number-
theoretic property. Ramanujan used the sums 
cq(n) as a sort of basis to represent arithmetic 
functions as infinite series in a way that is 
analogous to the Fourier series representation of 

a function. It is this idea that will be the focus of 
this paper. 
 We will follow the reasoning of Gadiyar and 
Padma and use these infinite series as a tool to 
study the twin prime problem and 
generalizations. By choosing an appropriate 
arithmetic function and naively applying a 
natural analogue of the Wiener-Khinchin 
formula, we make a conjecture about the 
asymptotic value of the number of twin primes 
less than any value. 
Finally, we use the infinite series representation 
of an arithmetic function to compute its values 
exactly. By truncating the sum after sufficiently 
many summands we are assured to be close 
enough to the actual value of the function that 
rounding the result will give us the correct 
value. 
The properties of Ramanujan sums that we have 
proved now lead us to the main topic of the 
previously mentioned 1918 paper. In a way that 
is analogous to the Fourier series expansion of a 
function, Ramanujan used these sums as a basis 
for infinite series expansions for arithmetic 
functions. 
Definition. Let a : N → C be an arithmetic 
function. Then a Ramanujan-Fourier series, or 
Ramanujan expansion, for the function a(n) is 
an infinite series of the form 

𝑎𝑎(𝑛𝑛) = �𝑎𝑎𝑞𝑞𝑐𝑐𝑞𝑞(𝑛𝑛)
∞

𝑞𝑞=1

 

Using elementary methods he was able to 
produce infinite series expansions for many of 
the commonly used arithmetic functions. A 
typical example is 
 

𝜎𝜎(𝑛𝑛)
𝑛𝑛

=
𝜋𝜋2

6
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Where𝜎𝜎(𝑛𝑛) = ∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛  
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It is not true that Ramanujan expansions for all 
arithmetic functions can be found using 
elementary properties of infinite series and 
simple algebra. In fact the following expansion, 
 
 

0 = �
𝑐𝑐𝑞𝑞(𝑛𝑛)
𝑞𝑞

∞

𝑞𝑞=1

 

is actually equivalent to the prime number 
theorem as we will see in chapter 4. This 
example also shows us that the Ramanujan 
expansion of a function is not unique in general, 
since the function that is identically zero also 
has the trivial expansion with all coefficients 
equal to zero. 
Absent from Ramanujan’s paper was a formula 
for the general coefficient in a Ramanujan 
expansion. A special case of this was done later 
in 1930 by Carmichael[3]. In that paper 
Carmichael also generalized Ramanujan’s idea 
so that any arithmetic function with similar 
properties to cq(n) can be used in the same way 
as a basis for an infinite series expansion for 
another arithmetic function. 
Carmichael’s results were heavily based on the 
concept of the mean-value of an arithmetic 
function. 
Definition:For an arithmetic function a(n), the 
limit 

𝑀𝑀(𝑎𝑎) = lim
𝑁𝑁→∞

1
𝑁𝑁
�𝑎𝑎(𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 

 
if it exists, is called the mean value of the 
function a. 
Carmichael’s discovery was a general formula 
for the coefficients of the Ramanujan expansion 
of an arithmetic function a(n) for which the 
mean value M (𝑎𝑎𝑐𝑐𝑞𝑞 ) exists for every q ∈ N. It is 
not true in general that the mean value M (𝑎𝑎𝑐𝑐𝑞𝑞 ) 
exists for every q ∈ N, but some progress has 
been made as to when we can be sure of 
existence. 
We will require some preliminary definitions 
before those results can be stated. Additionally, 
the following results deal with two classes of 
arithmetic functions,namely additive and 
multiplicative functions. As we have seen 
before a multiplicative function is an arithmetic 
function a(n) for which 

a(nm) = a(n)a(m) 

whenever (n, m) = 1. An example of this is the 
Ramanujan sum cq(n) as was proved 
previously. An additive function is an 
arithmetic function for which 

a(nm) = a(n) + a(m) 
whenever (n, m) = 1. An example of an additive 
function is the restriction of the logarithm to the 
natural numbers, since 

log(ab) = log(a) + log(b), 
in this case for all integers a and b. 
We will also define a semi-norm that will 
provide us with a crucial hypothesis for the 
upcoming results. 
Definition: For an arithmetic function a(n) and 
1 ≤ q < ∞, q ∈ R, define the semi-norm 

‖𝑎𝑎‖𝑞𝑞 = �lim
𝑥𝑥→∞

𝑠𝑠𝑠𝑠𝑠𝑠
1
𝑥𝑥
�|𝑎𝑎(𝑛𝑛)|𝑞𝑞
𝑛𝑛≤𝑥𝑥

�
1 𝑞𝑞⁄

 

and 
‖𝑎𝑎‖∞ = 𝑠𝑠𝑠𝑠𝑠𝑠{|𝑎𝑎(𝑛𝑛)|:𝑛𝑛 ∈ 𝑁𝑁} 

 
Note that when q = ∞ we actually have a norm 
above. 
We will associate to an arithmetic function a(n) 
the Dirichlet series 

𝑎𝑎�(𝑠𝑠) = �
𝑎𝑎(𝑛𝑛)
𝑛𝑛𝑠𝑠

∞

𝑛𝑛=1

 

absolutely  convergent  in  the  half-plane  R(s)  
>  k  + 1  when  the  sequence{𝑎𝑎𝑛𝑛}𝑛𝑛=1

∞  
satisfies 𝑎𝑎𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝑘𝑘). 
For any prime p define the function  𝑎𝑎𝑠𝑠 : N → C 
by 

𝑎𝑎𝑠𝑠(𝑛𝑛) = �𝑎𝑎(𝑛𝑛)𝜋𝜋𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑘𝑘 ,𝑘𝑘 ∈ 𝑁𝑁 ∪ {0}
0                            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋𝑠𝑠𝑒𝑒

� 

 
Also, for𝑑𝑑 ∈ 𝑁𝑁 ∪ {0}, define 

𝑎𝑎�𝑠𝑠 ,𝑑𝑑(𝑠𝑠) = �
𝑎𝑎(𝑠𝑠𝑘𝑘)
𝑠𝑠𝑑𝑑𝑠𝑠

∞

𝑛𝑛=1

 

 
Finally we require one more definition before 
the results can be stated. 
 
Definition: For two arithmetic functions a and 
b, define the Dirichlet convolution ofa and b, 
denoted a ∗ b, by 

(𝑎𝑎 ∗ 𝑏𝑏)(𝑛𝑛) = �𝑎𝑎(𝑑𝑑)𝑏𝑏 �
𝑛𝑛
𝑑𝑑
�

𝑑𝑑 |𝑛𝑛

 

We can now state our results that give us 
conditions for the existence of the coefficients 
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of the Ramanujan expansion for certain 
arithmetic functions. 
Theorem. For a multiplicative arithmetic 
function a(n), let γ = µ ∗ a and supposeǁaǁq< ∞ 
for some q > 1. If M (a) exists, and is nonzero, 
then 

𝑀𝑀(𝑎𝑎) = �𝛾𝛾�𝑠𝑠(1)
𝑠𝑠

 

 
and a has a Ramanujan expansion with 
coefficients 

𝑎𝑎𝑞𝑞 = 𝑀𝑀(𝑎𝑎)�
𝛾𝛾�𝑠𝑠(1)
𝛾𝛾�𝑠𝑠(1)

𝑠𝑠𝑑𝑑∥𝑞𝑞

 

where𝑠𝑠𝑑𝑑 ∥ 𝑞𝑞means that 𝑠𝑠𝑑𝑑|𝑞𝑞but 𝑠𝑠𝑑𝑑  ‡ n. 
The formula for the mean value M (a) is due to 
Elliott, which was applied by Tuttas and 
Indlekofer to arrive at the formula for the 
coefficients of the Ramanujan expansion. The 
next theorem about additive functions is due to 
Hildebrand and Spilker. 
Theorem.  For an additive arithmetic function 
𝑎𝑎(𝑛𝑛), let𝛾𝛾 = 𝜇𝜇 ∗ 𝑎𝑎and suppose ǁaǁq <∞ for 
some q > 1. If M (a) exists, then 

𝑀𝑀(𝑎𝑎) = �𝛾𝛾�𝑠𝑠(1)
𝑠𝑠

 

and a has a Ramanujan expansion with 
coefficients 

𝑎𝑎𝑞𝑞 =
𝑀𝑀(𝑎𝑎𝑐𝑐𝑞𝑞)
𝜑𝜑(𝑞𝑞)

 

These methods of computing Ramanujan 
expansions rely on the mean-value of the 
arithmetic function, but there are plenty of 
arithmetic functions for which the mean-value 
does not exist so we are unable to apply the 
above results. 
A 2010 paper by Lucht[15] introduced a new 
concept that would greatly increase the number 
of functions for which we are able to compute a 
Ramanujan expansion. His idea is largely based 
on the fact that cq(n) is closely related to the 
M¨obius function µ(q). His first result is useful 
in that not only can it help to determine the 
coefficients of a Ramanujan expansion,  it can 
also be used to sum a Ramanujan expansion to 
find the arithmetic function it represents. 
Conclusion 
Fourier series are a powerful tool in applied 
mathematics; indeed, their importance is 
twofold since Fourier series are used to 
represent both periodic real functions as well as 
solutions admitted by linear partial differential 

equations with assigned initial and boundary 
conditions.  
They play, in the case of regular periodic real 
functions, a role analogue to that one of Taylor 
polynomials when smooth real functions are 
considered. The idea of representation of a 
periodic function via a linear superposition of 
trigonometric functions finds, according  to 
seminal origins  back in Babylonian 
mathematics referring to celestial mechanics. 
Then, the idea was forgotten for centuries; thus, 
only in the eighteenth century, 
Euler (1748) and, later, D. Bernoulli (1753) and 
Lagrange (1759), looking for solutions of the 
wave equation referring to a string with fixed 
extrema, introduce sums of trigonometric 
functions. However, a systematic study is due to 
Fourier who is the first to write a 2p-periodic 
function as the sum of a series of trigonometric 
functions. Specifically, trigonometric 
polynomials are introduced as a tool to provide 
an approximation of a periodic function. 
Historical notes on the subject are comprised in 
where the influence of Fourier series, whose 
introduction forced mathematicians to find an 
answer to many new questions, is pointed out 
emphasizing their relevance in the progress of 
Mathematics. Since the fundamental work by 
Fourier, Fourier series became a very well-
known and widely used mathematical tool when 
representation of periodic functions is 
concerned. The aim of this section is to provide 
a concise introduction on the subject aiming to 
summarize those properties of Fourier series 
which are crucial under the applicative 
viewpoint. Indeed, the aim is to provide those 
notions which are required to apply Fourier 
series representation of periodic functions 
throughout the volume when needed. The 
interested reader is referred to specialized texts 
on the subject, such as to name a few of them. 
Accordingly, the Fourier theorem is stated with 
no proof. Conversely, its meaning is illustrated 
with some examples, and formulae are given to 
write explicitly the related Fourier series. 
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