FINITE ELEMENT ANALYSIS OF NOZZLE FOR VERTICAL PRESSURE VESSEL (MB-CLC401-S012026)

Vijayraj G Parmar ${ }^{1}$, D. S. Shah ${ }^{2}$
${ }^{1}$ P.G student, ${ }^{2}$ Assistant Professor
Department of Mechanical Engineering S.V.I.T
Vasad. Gujarat.

Abstract

This paper covers 3D modeling of all parts of vertical pressure vessel (MB-CLC401S012026) using CREO 2.0 parametric software as per ASME code section-VIII division-I. The design of NOZZLE A9 has been modified with introducing reinforcement pad at the connection of nozzle and shell portion. The design has been modified as per ASME code. Considering design data and calculated dimensions of pressure vessel, 3D CAD model has been generated using CREO Parametric modeling software. The static structural analysis has been carried out using ANSYS software for checking the design of NOZZLE A9 of the pressure vessel. The suggested design modification and accuracy of its FEA result has been checked by performing hydro static test at M/s Vijay Tanks And Vessel Pvt Ltd. Keywords: Vertical Pressure Vessel, CREO 2.0, ANSYS.

I. Introduction

Industrial pressure vessels are usually structures with complex geometry containing number of geometrical discontinuities and are often required to perform under complex loading conditions (internal pressure, external forces, thermal loads, etc.).[4] The design and manufacturing of these products are governed by mandatory national standards, codes and guidelines that ensure high safety performance. Most pressure vessel design codes (e.g. EN13445, BS550, ASME Sec-VIII Div-I)
assume a membrane stress state condition for the determination of the minimum shell thickness and large safety factors at areas of geometric discontinuities such as openings, change of curvatures, nozzle intersections, thickness reduction, etc.[14] It should be noted that large safety factors lead to increasing the material thickness, while safety is not necessarily increased; fracture toughness decreases with increasing thickness, and stress corrosion cracking at components operating in corrosive environments is expected to be higher in thicker parts.[3]
Design of pressure vessels is governed by the ASME pressure vessel code. The code gives for thickness and stress of basic components, it is up to the designer to select appropriate analytical as procedure for determining stress due to other loadings. [5]
The pressure vessels are designed with great care because the failure of vessel in service may cause loss of life and properties. The material of pressure vessels may be brittle such as cast iron or ductile as plain carbon steel and alloy steel.
The main component of pressure vessel are,
(1) Shell, (2) Head, (3) Nozzle, (4) Support and the type of pressure vessel A) Horizontal Pressure Vessels, B) Vertical Pressure Vessels, C) Spherical Pressure vessels.
A. Selection of Material for Pressure Vessel

The pressure vessel withstand with

- High or very low temperatures
- High pressure High flow rate
- Sometime corrosive fluid

Material Used for Pressure Vessels
Cast Irons, Plain Carbon Steel, Alloy Steels, Aluminium Alloys, Copper and Copper Alloys, Nickel and Nickel alloy etc. as per application of pressure vessel.

B. Categories of Failures

1. Material- improper selection of material, defects in material 2. Design - incorrect design data, inaccurate or in correct design method 3. Fabrication - poor quality control, improper or insufficient fabrication procedure including welding, heat treatment or forming method. 4. Services- change of services condition by the user, in experienced operation or maintenance personnel. Some types of services require special attention both for selection of material, design detail, and fabrication methods.
Types of failures.
Elastic deformation - Elastic instability or elastic buckling, vessel geometry, and stiffness as well as property of materials are protection against buckling.
Brittle fracture - Fracture can occur at low or intermediate temperatures. Brittle fractures have occurred in vessel made of low carbon steel in the $40^{\circ}-50^{\circ} \mathrm{F}$ range during hydro test where minor flaws exist.
Stress rupture - Creep deformation as a result fatigue or cyclic loading.
Excessive plastic deformation - The primary and secondary stress limit as in ASME section VIII, division 2 are intended to prevent excessive plastic deformation.
High strain - Low cycle fatigue is strain governed and occurred mainly in lower strength/high ductile material. Stress corrosion - Chlorides cause stress corrosion cracking in stainless steel.
Corrosion fatigue - Corrosion can reduce the fatigue life by pitting the surface and propagating crack. Material selection and fatigue properties are the major consideration.

II Design and Solid Modeling of Vertical Pressure Vessel.

Design data In Accordance with ASME Section VIII Division 1
Version: 2010 Edition,
Design Internal Pressure $\quad=0.745 \mathrm{~N} / \mathrm{mm}^{2}$
Design Internal Temperature $\quad=115^{\circ} \mathrm{C}$
Projection of Nozzle from Vessel Top $=0.0 \mathrm{~mm}$

From Vessel Bottom $\quad=500 \mathrm{~mm}$
Minimum Design Metal Temperature $=-100^{\circ} \mathrm{C}$
Type of Construction =Welded
TABLE I: Summary Of Required Thickness Calculation.

Item detail	Design pressure $\mathrm{Kgf} / \mathrm{cm}^{2}$	Min Thickness mm	Required Thickness mm
Skirt bottom	\cdots	8	\cdots
Bottom Disc	7.6	8	2.43337
Shell	7.6	8	2.43809
Top disc end	7.6	8	2.23727

TABLE II: Summary of Required Weld Sizes.

Required Base ring to Skirt Double Fillet Weld Size	4.7 mm
Required Gusset to Skirt Double Fillet Weld Size	6.3 mm
Required Top Plate to Skirt Weld Size	6.3 mm
Required Gusset to Top Plate Double Fillet Weld Size	0.73 mm

Figure 1. Existing design 3-D model of vertical Pressure Vessel

III Calculation of Nozzle-A9

Figure 2. Detail Drawing of Pressure Vessel

Figure 3. 2D-Drawing of Pressure Vessel.

Figure 6. Reinforcement Pad.
Required thickness per UG-37(a)
$=(\mathrm{P} * \mathrm{R}) /(\mathrm{S} * \mathrm{E}-0.6 * \mathrm{P})$
$=2.9689 \mathrm{~mm}$
Here Available Nozzle Neck Thickness
$=7.1564 \mathrm{~mm}$ (Which is acceptable for safe design)
A. Summary of Nozzle Pressure/Stress Results. Allowed Local Primary Membrane Stress $=206.83 \mathrm{~N} / \mathrm{mm}^{2}$
Local Primary Membrane Stress
$=77.28 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum Allowable Working Pressure (Pmax) $=3.67 \mathrm{~N} / \mathrm{mm}^{2}$

Weld Size Calculations of Nozzle A9
Intermediate Calculation for nozzle/shell Welds (Tmin)
$=7.1564 \mathrm{~mm}$
Intermediate Calculation for pad/shell Welds (TminPad)
$=8.0000 \mathrm{~mm}$
IV FEA RESULT OF NOZZLE A9 (STATIC STRUCTURAL) without R.F pad

Figure 7. Nozzle A9 detail view from assembly. TABLE IV: Model Geometry detail of Parts.

Object Name	SHELL BODY	NOZZLE A9	
Material			
Assignment	Structural Steel SA 240 TYPE 304		
Bounding Box			
Length X	$616 . \mathrm{mm}$	$350 . \mathrm{mm}$	
Length Y	$600 . \mathrm{mm}$	$350 . \mathrm{mm}$	
Length Z	$616 . \mathrm{mm}$	558.24 mm	
Properties	$8.8617 \mathrm{e}+006$ mm		
Volume	3. mm		

Figure 8. Model Mesh Figure.
TABLE V: Model (A9) Meshing detail.

Object Name	NOZZLE A9
Defaults	
Physics Preference	Mechanical
Relevance	100
Shape Checking	Standard Mechanical
Element Mid- side Nodes	Program Controlled
Sizing	
Relevance Center	Coarse
Element Size	Default
Statistics	Nodes

Elements	10492
Method	Hex Dominant
Free Face Mesh Type	Quad/Tri

Figure 9. Model Static Structural loading condition.
A. Solution

Figure 10. Model Static Structural Solution for Fatigue Tool Safety Factor.

TABLE VI: Model Static Structural Solution Results.

NOZZLE A9			
Type	Equivale nt Elastic Strain	Equivale nt (vonMise s) Stress	Total Deformati on
Results			
Minimum	$1.0738 \mathrm{e}-$ 006 $\mathrm{~mm} / \mathrm{mm}$	$7.0292 \mathrm{e}-$ 002 MPa	$0 . \mathrm{mm}$
Maximu m	$8.0364 \mathrm{e}-$ 004 $\mathrm{~mm} / \mathrm{mm}$	159.75 MPa	0.25214 mm
Minimum	NOZZLE A9		SHELL BODY

Occurs On		
Maximu		
m		
Occurs		
On	SHELL BODY	

After FEA analysis of Nozzle A9 result shows that Von-Mises stress generated at junction of Nozzle and Shell is 159.75 MPa . And total deformation occurred at same position is 0.25214 mm .Figure: indicates that welded joint of NozzleA9 is most critical area where failure can be occurred.

V FEA result of NOZZLE A9 (STATIC STRUCTURAL) with R.F pad.

Figure 11. NOZZLE A9 3-D model (With R.F pad).

TABLE VII: Model (A9) Geometry Parts.

Object Name	SHELL BODY	NOZZLE A9	R.F Pad_A9	
Material				
Assignment	Stru ctural Steel SA240 TYPE 304			
Length X	616. mm	$350 . \mathrm{mm}$	$400 . \mathrm{mm}$	
Length Y	600. mm	$350 . \mathrm{mm}$	$400 . \mathrm{mm}$	
Length Z	616. mm	558.24 mm	81.769 mm	
Mass	69.564 kg	67.265 kg	5.9686 kg	
Statistics				
Nodes	21084	14416	6205	
Elements	5956	4555	1788	

Figure

Figure 13. Model Static Structural loading condition.
A. Solution

Figure 14. Model Static Structural Solution Equivalent Elastic Strain Figure.
TABLE VIII: Model Static Structural Solution Results.

Object Name	Equivalen t Elastic Strain	Equivalen t Stress	Total Deformation		
Definition TypeEquivalen t Elastic					Equivalen
:---					
t	\quad	Total			
:---					
Deformation					
:---					

	Strain	(von- Mises) Stress	
Results			
$\begin{aligned} & \text { Minimu } \\ & \mathrm{m} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 6.9822 \mathrm{e}- \\ 007 \\ \mathrm{~mm} / \mathrm{mm} \end{array} \end{aligned}$	$\begin{aligned} & \text { 5.9392e- } \\ & 002 \\ & \mathrm{MPa} \end{aligned}$	0. mm
Maximu m	$1.0413 \mathrm{e}-$ 003 $\mathrm{~mm} / \mathrm{mm}$	$\begin{aligned} & 208.26 \\ & \mathrm{MPa} \end{aligned}$	0.23601 mm
Minimu m Occurs On	NOZZLE_A9		$\begin{aligned} & \text { SHELL_BOD } \\ & \mathrm{Y} \end{aligned}$
Maximu m Occurs On	RAIN_PAD_A9		$\begin{aligned} & \text { SHELL_BOD } \\ & \mathrm{Y} \end{aligned}$

VI Validation of work with Experimental results.

A. Hydro Static Test.

The pressure vessel to be hydro static tested in vertical position using additional support at test pressure and hold for 2 Hr minimum. The supports are to be positioned so as not to impose undue stress in the shell and to minimized deflection. Minimum hydro static test pressure shall be same as test pressure specified on the approved drawing. Inspection shall be made at all joint and connections at the test pressure. After success of testing, pressure is reduced gradually to zero and water is to be completely removed and the inside thoroughly drained of and dried in natural way. Bolt tightening is prohibited during hydro static test.

Test pressure to be applied as follows Increase pressure gradually at $1 / 3$ of M.A.W.P and hold for about 15 min for inspection. Then increase the pressure to the test pressure as mentioned in table and hold for 2 hr . minimum for inspection. After holding 2 hr . in test pressure, decrease pressure back to M.A.W.P and hold for 15 min . finally decrease pressure to atmospheric pressure.

Recording

Pressure and temperature shall be recorded every 15 min for 2 hr at test pressure and attached on pressure recorder report for their final justification/approval.

Figure 15. Hydro static test setup line diagram.
B. Experimental setup at VTV pvt ltd.

(A)

VII RESULTS AND DISCUSSION.

- Design modification of vertical pressure vessel has been done as per ASME code Section VIII Division-I.
- 3D-part and assembly model of vertical pressure vessel has been done as per design dimensions.
- Modified suggested geometry design of NOZZLE A9 gives more accurate and

(C)
safe design as per the comparative result outcome from the analysis of component.
- Analytical solution in ANSYS 17.0 gives more accurate result obtained that structural design with R.F pad is more safer and with more factor of safety.
- An Analysis result data gives result in deformation that with R.F pad total deformation is 0.23601 mm , while total deformation without R.F pad is 0.25214 mm . Which gives difference of 0.228539 mm . From that we can conclude that with R.F pad assembling of NOZZLE to pressure vessel shell reduce deformation ratio against applied pressure.
TABLE IX: Results outcome from HYDRO Test Performance.

$\begin{gathered} \text { Com } \\ \text { p. } \end{gathered}$	$\begin{aligned} & \text { MAW } \\ & \mathrm{P} \\ & \mathrm{Kgf} / \mathrm{c} \\ & \mathrm{~m}^{2} \end{aligned}$	Pressu re gener ated at test $\mathrm{Kgf} / \mathrm{c}$ m^{2}	$\begin{gathered} \hline[\mathrm{tr} \\] \\ \mathrm{m} \\ \mathrm{~m} \end{gathered}$	Weld path	Inspec tion of Areas or Stresse s
$\begin{gathered} \mathrm{NOZ} \\ \text { ZLE } \\ \text { B2 } \\ \hline \end{gathered}$	29.23	31.79	$\begin{aligned} & 3 . \\ & 73 \end{aligned}$	OK	Passed
$\begin{gathered} \mathrm{NOZ} \\ \text { ZLE } \\ \text { Z1 } \end{gathered}$	28.84	31.37	$\begin{aligned} & 4 . \\ & 17 \end{aligned}$	OK	---

- Different load types which are generated while Hydro test are having lower value then the Analytical value as mentioned in Table: which shows that design is more sustainable.
- Table IX: shows the value of stress at different component of pressure vessel while Hydro testing, that values are lower than allowable stress calculated from ASME CODE. Which shows that Design of Pressure Vessel is safest from failure.

NOZZLE H1	28.84	31.37	---	OK	Passed
NOZZLE A5	28.84	31.37	4.17	OK	Passed
NOZZLE A1	28.84	31.37	4.17	OK	Passed
NOZZLE A6	28.84	31.37	4.17	OK	Passed
NOZZLE A10	28.84	31.37	4.17	OK	Passed
NOZZLE A2	28.84	31.37	4.17	OK	Passed
NOZZLE A12	28.84	31.37	4.17	OK	Passed
NOZZLE A9	28.84	31.37	4.17	OK	Passed
NOZZLE A3	28.84	31.37	4.17	OK	Passed
NOZZLE A11	28.84	31.37	4.17	OK	Passed
NOZZLE A4	28.84	31.37	4.17	OK	Passed
NOZZLE A7	28.84	31.37	4.17	OK	Passed
NOZZLE A8	28.84	31.37	4.17	OK	Passed

CONCLUSIONS

- Design modification of vertical pressure vessel has been done as per ASME code Section VIII Division- I.
- 3D-part and assembly model of vertical pressure vessel has been done as per design dimensions.
- The comparison of Analytical results and FEA result using ANSYS 17.0 software gives the satisfactory of the suggested modified design of model.
- The FEA result shows that the deformation of the Nozzle A9 with R.F pad is 0.23601 mm , and without R.F pad 0.25214 mm . Which conclude that Nozzle with R. F pad Pressure vessel shell reduced the deformation ratio against applied pressure.
- The result obtained through Static Structural with R.F pad and without R.F pad are validated with result of HYDRO test performance. The validation shows
the reliability of modified design of Nozzle A9.

Acknowledgement.

I would like to gratefully acknowledge all those who showed their support and contribution to this work.
I am very much thankful to Professor D. S. SHAH, M.E Machine Design, my dissertation guide, for his contribution and effective guidance through positive criticism at every step of my work and support for the completion of this work.
I would like to wholeheartedly express my gratitude to MR. S. DAVID, design engineer at VIJAY TANKS AND VESSEL PVT LTD, for granting me permission to perform my experimentation at industry and for providing me his untiring support \& compilation of this work.

References

[1]. M. Jadav Hyder, M Asif, "Optimization of Location and Size of Opening In A Pressure Vessel Cylinder Using ANSYS". Engineering Failure Analysis .Pp 1-19, 2008.
[2]. Joship Kacmarcik, Nedelijko Vukojevic, "Comparison of Design
Method for Opening In Cylindrical Shells Under Internal Pressure
Reinforced By Flush (Set-On) Nozzles". 2011
[3]. V.N. Skopinsky, A.B. Smetankin, "Modeling and Stress Analysis of Nozzle Connections in Ellipsoidal Heads of Pressure Vessels under External Loading." Int. J. Of Applied Mechanics And Engineering, Vol.11, No.4, Pp.965-979, 2006
[4]. J. Fang, Q.H. Tang, Z.F.Sang, "Comparative Study of Usefulness for Pad Reinforcement in Cylindrical Vessels under External Load on Nozzle". International Journal Of Pressure Vessel And Piping 86,Pp 273-279, 2009
[5]. James J. Xu, Benedict C. Sun, Bernard Koplik, "Local Pressure Stress
On Lateral Pipe-Nozzle With Various Angles Of Intersection," Nuclear
Engineering And Design 199, Pp 335-340, 2000
[6]. Jaroslav Mackerle , "Finite Element In The Analysis Of Pressure Vessels And Piping, An Addendum: A Bibliography(2001-2004),"

International Journal Of Pressure Vessel And Piping 82, Pp 571-592, 2005
[7]. M. F. Hsieh, D.G. Moffat, J. Mistry, "Nozzle In The Knuckle Region Of Torispherical Head: Limit Load Interaction Under Combined Pressure And Piping Loads", International Journal Of Pressure Vessel And Piping
77,Pp 807-815, 2000
[8]. Chandrakant R Kini , Akshaya T. Poojary , Suprith Jagannath, Rajesh Nayak, " Modelling and Equivalent Stress Analysis of Flat Dish End Pressure Vessel" Accepted 03 Sept 2015, Available online 06 Sept 2015, Vol.5, No. 5 (Oct 2015)
[9]. Yogesh Borse, Avadesh Sharma, "Modeling Of Pressure Vessel With Different End Connections Using Pro-Mechanica", International Journal
Of Engineering Research And Application, Vol. 2,Pp 1493-1497,2012
[10]. M. Pradeep Kumar, K. Vanisree, "Design And Implementation Of Circular Cross Sectional Pressure Vessel Using Pro-E And ANSYS", International Journal Of Morden Engineering Research, Vol 3, Pp 23502355
[11]. Hardik B Nayak, R R Trivedi, "Stress Analysis Of Reactor Nozzle To Head Junction", International Conference On Current Trend In Technology, Nirma University,2011
[12].B.S.Thakkar, S.A.Thakkar, "design of pressure vessel using asme code, section viii, division 1" International Journal of Advanced Engineering Research and Studies E-ISSN2249-8974, 2012.

