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Abstract—This paper proposes differential 
evolution (DE) Algorithm for solving the 
Flexible job shop scheduling problem (FJSP) 
with the objective of minimization of 
makespan. Differential evolution algorithm 
is a latest population based evolutionary 
meta-heuristic, which was originally devised 
for solving continuous optimization 
problems, as stochastic real-parameter 
global optimizer. The DE employs simple 
mutation and cross- over to generate new 
candidate solutions, and applies one-to-one 
competition scheme to parsimoniously 
determine whether the new candidate or its 
present will survive in the next generation. 
The reckoning results and comparisons show 
that the proposed algorithm is very effective.   
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I.  Introduction 

Scheduling problems have a vital role in 
recent years due to the growing consumer 
demand for variety, reduced product life cycles, 
changing markets with global competition and 
rapid development of new technologies. The 
Job Shop Scheduling Problem (JSSP) is one of 
the most popular scheduling models existing in 
practice, which is among the hardest 
combinatorial optimization problems [1]. Many 
approaches, such as, Simulated Annealing (SA) 
[2], Tabu Search (TS) [3], Genetic Algorithm 
(GA) [4], Ant Colony Optimization (ACO) [5], 
Neural Network (NN) [6], Evolutionary 
Algorithm (EA) [7] and other heuristic 

approach [8–10], have been successfully 
applied to JSSP. 

In order to match today’s market 
requirements, manufacturing systems need not 
only automated and flexible machines, but also 
flexible scheduling systems. The Flexible Job 
Shop Scheduling Problem extends JSSP by 
assuming that, for each given operation, it can 
be processed by any machine from a given set. 
Bruker and Schlie [11] were among the first to 
address this problem. The difficulties of FJSSP 
can be summarized as follows. 

1) Assignment of an operation to an 
appropriate machine. 

2) Sequencing the operations on each 
machine. 

3) A job can visit a machine more than 
once (called recirculation).  

These three features significantly increase 
the complexity of finding even approximately 
optimal solutions. 

         The job shop scheduling problem 
(JSSP) is one of the arduous combinatory 
optimization problems. Flexible job shop 
scheduling problem (FJSP) is a protraction of 
job shop scheduling problem that allows an 
operation to be processed by any machine from 
a given group, onward disparate routes. 
Scheduling optimization plays an important 
role in well designed and efficient 
manufacturing systems to fulfill global business 
needs. Intelligent utilization of resources to 
improve efficiency of the manufacturing 
systems is a convoluted combinatory job shop 
scheduling problem. Solving this kind of 
combinatory optimization problems with 
scholastic methods are almost impossible or 
takes considerable long time. Scheduling is 
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defined in general as the process of    
Accrediting tasks to the available limited 
resources with goal of meeting the settled 
aspiration. 

Scheduling in manufacturing industries is 
defined as the allocation of jobs to the available 
machines to reach the time based aspirations 
such as minimization of makespan, tardiness 
and due date etc. Scheduling is distressed with 
allocating limited resources to tasks to optimize 
certain objective functions. 

 The scholastic job shop scheduling 
problem can be stated as follows: A group of m 
machines and group of n jobs are given, each 
job contains of sequence of operations and a set 
of executed in a specified order. Each operation 
has to be performed on a given machine for a 
given time. In scheduling each operation 
sequence can be permuted independently [12]. 
The problem with n jobs and m machines can 
have a maximum of (n!)m different solutions. 
The completion of all operations of all jobs is 
known as makespan. 

       The objective is to find a feasible 
schedule with minimum makespan. Feasible 
schedules are obtained by permuting the 
processing order of operations on machines 
without violating the technological constraints. 

        The job shop scheduling problems are 
the most difficult problems as they are 
classified as non Deterministic polynomial (Np) 
hard type. The combinatory search space 
increases exponentially with increase in 
resources, and thus the generation consistently 
good. 

II. Problem formulation 

 The Flexible job shop scheduling 
problem formulated as follows: There are a set 
of n number of independent jobs,   
j={j1,j2,j3,…,jn} and a set of m machines 
m={m1,m2,m3,…,mn}.  job is formed by a 
sequence of operations O, o={o1,o2,o3,…,on} to 
be formed one after another according to the 
given sequence. Each operation i.e. jth 
operation of job ji, must be executed on one 
machine chosen from a given set of machines. 
The processing time of operation is machine 
dependent. The scheduling consists of two sub 
problems: The routing sub problem that assigns 
each operation to an appropriate machine and 
sequencing sub problem that determines a 
sequence of operations on all the machines. The 
objective is to find the perfect schedule that 

minimizes the makespan. The makespan means 
the time need to complete all the jobs, and can 
be denoted as F (Cmax) [13]. 

The notations which are used to develop a 
mathematic   model of the designing of Flexible 
job shop scheduling problem are defined as 
follows: 

 
TABLE I.        NOTATIONS FOR FJSP 

  
notatio

n 
Representation 

 
i 

 
Part type index, i=1, 2, 3…n 

j Number of jobs. j=  
m Number of machines m =   
O sequence of operations O=  
(Cmax) Makespan(Maximum completion time)in 

minutes 
(Ci,j,k) Partial makespan without predecessors.
(Ci,j+1,k) Enhanced makespan with predecessors. 
 dij The duration(processing time) of 

operation i of job j. 
di,j+1 The duration of operation i=1 of job j 
Oi,k Operation of job on corresponding 

machine.
Bi,k Job processing on corresponding 

machine. 
(fi,j,k) Vector representing corresponding 

operation of job on specified machine. 
Roij Most work remaining (MWKR) in 

minutes.  
Cr Correction Ratio. 
Pr Probability (Randomly taken). 

III. Objective function  

Minimize makespan F (Cmax) 
Minimize F (Cmax) = Cn,m  

       Conjunctive constraints; 
Ci,j,k  ≥ Ci,j+1-di,j+1 for,   i= 1, 2…n; 

                                                  j= 1, 2…p; 
                                                  k=1, 2…m.    
           Ci,j,k ≥ 0                          for,   i= 1, 2…n; 
                                                          j= 1, 2…p; 
                                                          k=1, 2…m 
       Resource constraints 
               Oi,j,k  =1          
If job j scheduled before the  same job on 

specified machine=0          Otherwise 
For, i= 1, 2…n;  
        j= 1, 2…p; 
        k= 1, 2…m. 
 
The job shop scheduling represented by 

considering a three jobs and three machines 
problem (3X3 problem) as follows. 
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TABLE II.      THE BASIC REPRESENTATION OF 

FJSP 

 
Representation of fixed id for the operations 

can be noted, and then the above problem can 
be written as follows;  

 
TABLE III.        REPRESENTATION OF FIXED ID 

FOR THE OPERATIONS 
 

Jobs 1 2 3 
Operations 1 2 3 1 2 3 1 2 3 
Machines 1 2 3 3 2 1 2 3 1 

Work 
remaining 

9 7 4 9 5 2 7 5 3 

Processing 
time 

2 3 4 4 3 2 2 2 3 

Fixed ID 1 2 3 4 5 6 7 8 9 
 
 The selection process to calculate the makes 
span will be done by the following 
considerations; 

a. Most work remaining (MWKR) . 
b. SPT (shortest processing time), if 

MWRK is tie. 
c. Random selection of operation if 

processing time is tie. 

IV. Proposed algorithm 

The Differential evolution (DE) algorithm 
proposed by Storn and Prince (1997) is one of 
the latest population based evolution meta-
heuristic, which was originally devised for 
solving continuous optimization problems, as 
stochastic real-parameter global optimizer. The 
DE employs simple mutation and cross-over to 
generate new candidate solutions and applies 
one-to-one competition scheme to determine 
whether the new candidate or its present 
solution will survives in the next generation, 
since characterized by a novel mutation 
operator. The algorithm is very good at 

exploring the search space and locating the 
promising region [14].  

 
A.   Description of Differential evolution 

algorithm 
a) Initialization 

 
The initialization of the basic Differential 

evolution algorithm aims to set the control 
parameters and the initial population vector. 
The parameters include the size of population 
Np (Non deterministic polynomial). The 
mutation scale factor (F) and cross-over 
probability (Cr), It is obvious that the good set 
of parameters can be enhance the ability of the 
algorithm to search for the global optimization 
or near optimum region with a high 
convergence rate, as (DE) maintains a 
population on Np real valued. The dimensional 
vector denoted as XiG where i denotes ith 
number of population and G denotes the 
generation to which the population belongs to.   

 

XiG =[ X1,iG + X2,iG + X3,iG+,…+ XD,iG]   (1)  
   Where;  i=1, 2, 3… . 
Which each parameter, taking values from 

user defined bounds. 

Xj,iG   Є   [ Xj
low,   Xj

up ]   (2) 
             Where;    j=1, 2, 3… D. 
 

The size of the population doesn’t change 
during the evaluation process, and it is one of 
the algorithm`s control parameters. Initially, the 
population is randomly created and may cover 
the entire parameter space with uniform 
probability [15]. Initialization process is 
followed by the process of evaluation, i.e. the 
cost of each vector is evaluated and stored for 
the feature reference.   

b) Mutation 
Mutation is an operation that adds a vector 

differential to the population vector for each 
target vector XiG. 

           Where i=1, 2, 3…Np. 
  The mutant vector is generated according to 

the relation; 
 ViG+1=XaG  + F[ XbG - XcG ]    (3) 

Where a, b, c are different integer numbers 
taken randomly for the mutation process over 
the range of population i.e.[1,Np] and F is 

 
Jobs 

Operations-machine with processing time in 
min 

Operations Machine1 Machine2 Machine3 
J1 O11 2 - - 

O12 - 3 - 
O13 - - 4

J2 O21 - - 4 
O22 - 3 - 
O23 2 - - 

J3 O31 - 2 - 
O32 - - 2
O33 3 - - 
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scaling factor(F > 0), which is a real constant in 
region[according to Storn and Price,1997]. 

Therefore, for each target vector XiG DE 
generates a new mutant vector Vi,G+1 by adding 
the weighted difference between two 
(randomly selected) population vectors XbG 
,XcG to a third  XaG, (The best fitness vector) 
with minimum makespan.   

   The mutant vector will be used as a donor 
vector for producing a trail vector, in the case 
where mutant vector is to shift outside the 
permitted interval(between the lower bound and 
upper bound shown in (2). 

    Then the parameters, can require by using 
the relation, 

    
If  Vk < Vk

low  then Vk = Vk
low           (4)         

If  Vk  >  Vk
up  then Vk= Vk

up 
Where; 
                 k=1, 2, 3… D. 

c) Cross-over 
The Cross-over represents as typical case of 

the information exchange between the 
individuals. In the basic DE, in order to 
increase diversity of the mutant vector, the 
operator of cross-over is applied on the 
population. This operator may partially 
suppress the effect of mutation by forming a 
trail vector (Generally the cross over 
probability lies in between 0 to 1).    

Then the generation of trail vector is 
formulated as the following equation; 

 
Ui,G+1 =[ U1,iG+1 + U2,iG+1  +…+ UD,iG+1 ]  (5) 
 
The components of trail vector are taken either 
from the mutant vector Vi,G+1 or from the 
original target vector XiG according to the 
relation; 

 
Vk,iG+1 If random number Pr  
Uk,iG+1=               (6) 
Xk,iG   Otherwise 
Where randomization is function that returns a 
uniform floating point number in range [0,1]Pc 

is cross-over probability (user defined 
parameter) and initially generated random 
number is a function which returns a random 
integer number in the range. This function 
ensures at least one parameter will be taken 
from the mutant vector. 

d)   Selection 
       Selection is the process of producing the 

offspring to the new generation ‘G+1’.Unlike 
many other EA`s (Evolutionary algorithms) DE 
doesn’t use ranking or propositional selection. 
Instead it decides whether the target or the trail 
vector is allowed to advance in the next 
generation by comparing their values. If the 
values of the target vector are lower than that of 
trail vector, then the target vector survives. It 
reproduces its structure to the next generation. 

      More finally, their greedy mechanism can 
be written as follows: 
if cost (xiG  ≤ cost Ui,G+1) 
            XiG+1=        (7) 

 Ui,G+1            Otherwise 

V. Overview of Differential evolution 
algorithm 

The basic steps and working principle of 
Differential evolution algorithm for a flexible 
job shop scheduling problem is as follows;  

Step 1:       Specify the population size (Np), 
scaling           factor (F), cross-
over probability (Cr),            
and maximum number of generations (Gmax). 

Step 2:       Set initial population G=0 
Step 3:       Evaluate each sample population 

and specify 
                  The base vector and denote it a 

XaG or XbestG. 
Step 4:       Mutation phase. Generate Noise 

vector, by             using 
mutation operator (3). 

Step 5        Cross- over operation. Generate 
Np trail vectors using (6). 
Step 6:       For each trail or sample vector 

evaluate the Makespan and compare with 
makespan of Base vector  XbestG. 

Step 7:       Selection process. Evaluating the 
Target  vector Xi,G+1 by the individual selection 
operator described in  (7). Label it as next   
generation. Make G = G+1. 

Step 8:       Updating of XbestG. 
Step 9:        If G <Gmax then go to step 4. 

Otherwise stop the procedure. 
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VI. Implementation of Differential 
Evolution Algorithm 

TABLE IV.        IMPLEMENTATION OF 

DIFFERENTIAL EVOLUTION ALGORITHM FOR 

FJSP 

 
In Differential evolution algorithm each sample 
pupation representation a chromosome and 
each chromosome represents a solution for the 
sequence. Each sequence is having a set of 
operation for jobs on different machines. 

Then the process will continued to calculate a 
noise vector form two different randomly 
selected vector. Trail one we have taken 
chromosome 2and chromosome 3 and 
chromosome 1is considered as the base vector. 
The calculation of makespan for the each 
chromosome is required, then the calculation of 
makespan for the chromosome done for the 
3X3 problem shown in table III. 

a) Calculation of makespan for base 
vector 

 
Base vector→ 1       2      3      4       5      6       7       8       9 
   (J, O, M) →  (111)(122)(133)(213)(222)(231)(312)(323)(331) 
        Roij           9       7       4       9      5       2       7        5      3           
         P.T          2       3       4       4      3       2       2        2     3   

   
        The Gantt chart is used to calculate the 
makespan by considering the assigning 
machines based on the most work reaming and 
shortest processing time. The makespan of the 
chromosome calculated and the time taken to 
complete all the operations for the entire job is 
17 minutes. 

b) Calculation of noise vector 
 

Base vector→1      2       3      4      5      6      7       8       9 
    
  Let us choose two random vector chromosomes 2&3, 
 
   Chromosome 2 → 1   4   2   7   5   6   8   3   9  
 
   Chromosome 2 → 7   8   4   1   5   9   2   6   3 
                          ( - )______________________ 
                                 6   4   2   6   0   3   6   3   6   X 0.45 
                                ______________________ 
                                 2   8   9   1   7   1   6   3   6 
     Base vector→      1   2   3   4   5   6   7   8   9      
                           ( +)______________________ 
                                 3  10  12 5  12  7  13  11 15 
                                _______________________ 
         Converting the above values to `9’, we get 
                                 3   1   3   5   3   7   4   2    6 

Here it is observed that vector doesn’t 
containing all the operations and some 
operations are repeated, hence we replace the 
non existing operation to avoid repetition. 
Then the noise vector will be,        

Noise vector →   3  1  8  5  9  7  4  2  6. 
The makespan for the noise vector is 

calculated by using Gantt chart and obtained as 
11 minutes. 

c) Calculation of Target vector 
Consider, 
Pr = Random number (probability generated 
randomly). 
C. R= Correction ratio (0<Cr<1). 
Generally the correction ratio is defined or 
fixed by the user.  
Then the condition for selection the target 
vector is as follows; 
 
If,  Pr< Cr.  Then, Noise vector =Target vector. 
If,  Pr > Cr.  Then, best of Noise vector = Target 
vector. 
For the base vector, Pr  = 0.45 and Cr = 0.5, 
here  Pr<Cr then, the noise vector is considered 
as Target vector. This procedure is to repeat for 
all the population individually to calculate 
make span. 

VII. Experimental setup 

The proposed DE algorithm was implemented 
in MATLAB (version 8.5 on windows 64 bit 
operation system) on an Intel 2.83 GHz Xeon 
processor with 4 GB of RAM and 2 GB GPU, 
To evaluate the performance of DE algorithms. 
The following four sets of standard benchmark 

 Sample 
vector 

Noise vector Target 
vector 

ch
r. 

Popula
tion 

C
max 

Inter
media

te 
Popul

i

C
m
ax 

Cr 
 

Pr New 
pop
ulati
on 

Cma

x 

1 12345
6789 

17 31859
7426 

11 0.5 
 

0.45 318
597
426 

11 

2 14275
6839 

       

3 78415
9263 

       

4 45126
7839 

       

5 12453
6789 
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in-stances in the FJSP literature are considered 
[14]. 

(1) Kacem data: The data set consists of 
five instances from  Kacem et al. (2002b) 
with number of jobs ranging from 4 to15, 
number of machine ranging from 5 to 10, 
number of operations for each job ranging 
from 2 to 4, and number of operations for 
all jobs ranges from 12 to 56.  

(2) BRdata: The data set consists of 10 
instances from  Brandim- arte (1993), 
which were generated randomly generated 
using uniform distribution between given 
limits. The number of jobs ranges from 10 
to 20, number of machines ranges from 4 
to 15, number of operations for each job 
ranging from 5 to 15, and number of 
operations for all jobs ranges from 55 to 
240.  

(3) BCdata: The data set consists of 21 
instances from  Barnes  and Chambers 
(1996), which were obtained from three 
ever challenging classical JSP instances 
(mt10, la24, la40) ( Fisher  and Thompson, 
1963; Lawrence, 1984). The number of 
jobs ranges from 10 to 15, number of 
machines ranges from 11 to 18, number of 
operations for each job ranging from 10 to 
15, and number of operations for all jobs 
ranges from 100 to 225.  

The proposed algorithms run 100 
independent times for each in-stance from 
Kacem data, BRdata, and BCdata, and only run 
10 independent times for each instance from 
HUdata due to the large number of instances in 
this data set. The results will involve four 
metrics including the best makespan (Best), the 
average makespan (AVG), the standard 
deviation of makespan (SD), and the average 
computational time in seconds (CPUav) 
obtained by the related algorithms. 

       To show the superiority of our DE 
algorithm, we compare our computational 
results with competitive algorithms HGA [16] 
& Discrepancy algorithm [17] in the literature 
for each data set. 

 
 

VIII. Conceptual results 

a) Results of Kacem instances 
The first data set under study is Kacem data. 

We compare ur DE with two recently proposed 
algorithms including HGA & Discrepancy 
algorithm.  The detail results are listed in  Table 
5. The first column symbolizes the name for 
each instance; the second column shows the 
size of the instance, in which n stands for the 
number of jobs and m represents the number of 
machines; the third column lists the best known 
solution (BKS) ever reported in the literature 
for each instance; the remaining columns 
describe the computational results HGA & 
Discrepancy algorithm.  The results from the 
table 5, It was observed that the conceptual 
results for HGA & Discrepancy algorithm were 
quite equal to Differential evolution algorithm. 

b) Results of BRdata instances 
The first data set under study is Kacem data. 

We compare our DE with two recently 
proposed algorithms including HGA & 
Discrepancy algorithm.  The detail results are 
listed in  Table 5. The first column symbolizes 
the name for each instance; the second column 
shows the size of the instance, in which n 
stands for the number of jobs and m represents 
the number of machines; the third column lists 
the best known solution (BKS) ever reported in 
the literature for each instance; the remaining 
columns describe the computational results 
HGA & Discrepancy algorithm.  The results 
from the table 5, it was observed that the 
conceptual results for HGA & Discrepancy 
algorithm. The makespan for the instances are 
comparative and the results obtained by DE 
algorithm were shown to be effective and 
efficient. 

c) Results of BCdata instances 
The BCdata is one of the largest data set for the 
FJSP in the literature. Recent important work 
on this data set can be referred the total 21 
instances were shown in the table 7 and the 
results obtained by DE algorithm were 
compared along with average makespan for all 
the population. The comparison of makespan of 
HGA & Discrepancy algorithm to DE 
algorithm was done and it is observed that the 
conceptual results for BC data instances were 
efficient and accurate. 
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d) Effect of hybridizing DE and local    
 search algorithms 

To investigate the effectiveness of DE 
algorithm based global search and local 
search algorithms, the experiments and 
comparisons are carried out between the DE 

algorithm with Hybrid Genetic and 
Discrepancy algorithms. 

 
 
 

TABLE V.  RESULTS OF KACEM INSTANCES. 
 

 
Instance 

 
n x m 

(jobs/mac
hines) 

 
BKS 

HGA ( Jie 
Gao 2008) 

Discrepanc
y 

search(Abi
r Ben 
2010) 

Proposed DE  algorithm 

 
Population 

size 

 
Best  

 
AVG  

 
CPUav 

Cmax Cmax 
Case 1 4 x 5 11 11 11 100 11 11.05 0.15 
Case 2 8 x 8 14 14 14 100 14 14.00 0.21 
Case 3 10 x 7 11 11 11 100 11 11.02 0.29 
Case 4 10 x 10 7 7 7 100 7 7.00 0.36 
Case 5 15 x 15 11 11 11 100 11 11.05 0.41

 
TABLE VI.    RESULTS OF BRDATA INSTANCES. 

 
Table VII.  RESULTS OF BCDATA INSTANCES. 

 
 

Instance 
 

n x m 
(jobs/mac

hines) 

 
BKS 

HGA ( Jie 
Gao 2008) 

Discrepan
cy 

search(Abi
r Ben 
2010) 

Proposed DE  algorithm 

 
Population 

size 

 
Best  

 
AVG  

 
CPUav 

Cmax Cmax 
Mt10x 10 x 11 918 927 918 100 918 918.02 31.43 
Mt10xx 10 x 12 918 910 918 100 918 918.06 31.70 
Mt10xxx 10 x 13 918 918 918 100 918 918.23 35.43 
Mt10xy 10 x 12 905 918 906 100 905 905.21 34.51 
Mt10xyz 10 x 13 847 918 849 100 847 847.49 35.79 
Mt10c1 10 x 11 927 905 928 100 928 928.21 31.07
Mt10cc 10 x 12 908 849 910 100 906 905.98 34.00 
Setb4x 15 x 11 925 914 925 100 925 925.42 34.04 
Setb4xx 15 x 12 925 914 925 100 925 925.02 31.76 
Setb4xxx 15 x 13 925 925 925 100 924 924.05 31.89 
Setb4xy 15 x 12 910 925 916 100 910 910.07 31.13 

 
Instance 

 
n x m 

(jobs/mac
hines) 

 
BKS 

HGA ( Jie 
Gao 2008) 

Discrepanc
y 

search(Abi
r Ben 
2010) 

Proposed DE  algorithm 

 
Population 

size 

 
Best  

 
AVG  

 
CPUav 

Cmax Cmax 

MK01 10 x 6 40 40 40 100 40 40.00 1.78 

MK02 10 x 6 26 26 26 100 26 26.01 2.84 

MK03 15 x 8 204 204 204 100 204 203.97 11.47 

MK04 15 x 8 60 60 60 100 60 60.02 5.07 

MK05 15 x 4 172 173 175 100 173 172.91 23.21 

MK06 10 x 15 58 58 60 100 61 61.20 7.89 
MK07 20 x 5 139 144 139 100 141 141.01 13.21 

MK08 20 x 10 523 523 523 100 521 520.97 31.25 

MK09 20 x 10 307 307 307 100 308 308.25 29.12 

MK10 20 x 15 197 198 198 100 197 197.02 24.55 
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Setb3xyz 15 x 13 903 925 905 100 905 905.21 30.39 
Setb4c9 15 x 11 914 916 919 100 914 914.01 32.19 
Setb4cc 15 x 12 907 905 909 100 909 909.21 32.00 
Seti5x 15 x 16 1198 1175 1201 100 1204 1204.02 78.20 
Seti5xx 15 x 17 1197 1138 1199 100 1202 1202.08 76.52 
Seti5xxx 15 x 18 1197 1204 1197 100 1202 1202.10 75.07 
Seti5xy 15 x 17 1136 1202 1136 100 1138 1138.23 79.98 
Seti5xyz 15 x 18 1125 1204 1125 100 1130 1130.41 81.85 
Sei5c12 15 x 16 1174 1136 1174 100 1175 1175.56 65.06 
Seti5cc 15 x 17 1136 1126 1136 100 1137 1137.21 74.83 

 

IX. Conclusions 

This paper can be summarized, that the 
Differential evolution (DE) algorithm is the 
effective tool to solve the Flexible job shop 
scheduling problem. The performance of DE 
was largely improved by means of local search 
and some available knowledge was learned 
from the optimization of FJSP, at the  
same time, the existing knowledge was applied 
to guide the current heuristic searching of DE. 
Final experimental results indicate that the 
proposed DE algorithm outperforms some 
published methods in the quality of schedules. 
The efficiency of the DE algorithm also helps 
to solve the extension to multi-objective FJSSP 
will be investigated in the near future. 
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