

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015
71

DIFFERENTIAL EVOLUTION ALGORITHM FOR FLEXIBLE
JOB SHOP SCHEDULING PROBLEM
Bhaskara.P1, Prof.G.Padmanabhan2, B.Satheesh Kumar3

Sri Venkateswara University College of Engineering
India

E-mail:pbhaskar786@gmail.com,gpadmanabhan@svuniversity.ac.in

Abstract—This paper proposes differential
evolution (DE) Algorithm for solving the
Flexible job shop scheduling problem (FJSP)
with the objective of minimization of
makespan. Differential evolution algorithm
is a latest population based evolutionary
meta-heuristic, which was originally devised
for solving continuous optimization
problems, as stochastic real-parameter
global optimizer. The DE employs simple
mutation and cross- over to generate new
candidate solutions, and applies one-to-one
competition scheme to parsimoniously
determine whether the new candidate or its
present will survive in the next generation.
The reckoning results and comparisons show
that the proposed algorithm is very effective.

Keywords—Scheduling, Flexible Job Shop
Scheduling, Differential Evolution
Algorithm, Local Search, Makespan

I. Introduction

Scheduling problems have a vital role in
recent years due to the growing consumer
demand for variety, reduced product life cycles,
changing markets with global competition and
rapid development of new technologies. The
Job Shop Scheduling Problem (JSSP) is one of
the most popular scheduling models existing in
practice, which is among the hardest
combinatorial optimization problems [1]. Many
approaches, such as, Simulated Annealing (SA)
[2], Tabu Search (TS) [3], Genetic Algorithm
(GA) [4], Ant Colony Optimization (ACO) [5],
Neural Network (NN) [6], Evolutionary
Algorithm (EA) [7] and other heuristic

approach [8–10], have been successfully
applied to JSSP.

In order to match today’s market
requirements, manufacturing systems need not
only automated and flexible machines, but also
flexible scheduling systems. The Flexible Job
Shop Scheduling Problem extends JSSP by
assuming that, for each given operation, it can
be processed by any machine from a given set.
Bruker and Schlie [11] were among the first to
address this problem. The difficulties of FJSSP
can be summarized as follows.

1) Assignment of an operation to an
appropriate machine.

2) Sequencing the operations on each
machine.

3) A job can visit a machine more than
once (called recirculation).

These three features significantly increase
the complexity of finding even approximately
optimal solutions.

 The job shop scheduling problem
(JSSP) is one of the arduous combinatory
optimization problems. Flexible job shop
scheduling problem (FJSP) is a protraction of
job shop scheduling problem that allows an
operation to be processed by any machine from
a given group, onward disparate routes.
Scheduling optimization plays an important
role in well designed and efficient
manufacturing systems to fulfill global business
needs. Intelligent utilization of resources to
improve efficiency of the manufacturing
systems is a convoluted combinatory job shop
scheduling problem. Solving this kind of
combinatory optimization problems with
scholastic methods are almost impossible or
takes considerable long time. Scheduling is

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015

72

defined in general as the process of
Accrediting tasks to the available limited
resources with goal of meeting the settled
aspiration.

Scheduling in manufacturing industries is
defined as the allocation of jobs to the available
machines to reach the time based aspirations
such as minimization of makespan, tardiness
and due date etc. Scheduling is distressed with
allocating limited resources to tasks to optimize
certain objective functions.

 The scholastic job shop scheduling
problem can be stated as follows: A group of m
machines and group of n jobs are given, each
job contains of sequence of operations and a set
of executed in a specified order. Each operation
has to be performed on a given machine for a
given time. In scheduling each operation
sequence can be permuted independently [12].
The problem with n jobs and m machines can
have a maximum of (n!)m different solutions.
The completion of all operations of all jobs is
known as makespan.

 The objective is to find a feasible
schedule with minimum makespan. Feasible
schedules are obtained by permuting the
processing order of operations on machines
without violating the technological constraints.

 The job shop scheduling problems are
the most difficult problems as they are
classified as non Deterministic polynomial (Np)
hard type. The combinatory search space
increases exponentially with increase in
resources, and thus the generation consistently
good.

II. Problem formulation

 The Flexible job shop scheduling
problem formulated as follows: There are a set
of n number of independent jobs,
j={j1,j2,j3,…,jn} and a set of m machines
m={m1,m2,m3,…,mn}. job is formed by a
sequence of operations O, o={o1,o2,o3,…,on} to
be formed one after another according to the
given sequence. Each operation i.e. jth
operation of job ji, must be executed on one
machine chosen from a given set of machines.
The processing time of operation is machine
dependent. The scheduling consists of two sub
problems: The routing sub problem that assigns
each operation to an appropriate machine and
sequencing sub problem that determines a
sequence of operations on all the machines. The
objective is to find the perfect schedule that

minimizes the makespan. The makespan means
the time need to complete all the jobs, and can
be denoted as F (Cmax) [13].

The notations which are used to develop a
mathematic model of the designing of Flexible
job shop scheduling problem are defined as
follows:

TABLE I. NOTATIONS FOR FJSP

notatio

n
Representation

i

Part type index, i=1, 2, 3…n

j Number of jobs. j=
m Number of machines m =
O sequence of operations O=
(Cmax) Makespan(Maximum completion time)in

minutes
(Ci,j,k) Partial makespan without predecessors.
(Ci,j+1,k) Enhanced makespan with predecessors.
 dij The duration(processing time) of

operation i of job j.
di,j+1 The duration of operation i=1 of job j
Oi,k Operation of job on corresponding

machine.
Bi,k Job processing on corresponding

machine.
(fi,j,k) Vector representing corresponding

operation of job on specified machine.
Roij Most work remaining (MWKR) in

minutes.
Cr Correction Ratio.
Pr Probability (Randomly taken).

III. Objective function

Minimize makespan F (Cmax)
Minimize F (Cmax) = Cn,m

 Conjunctive constraints;
Ci,j,k ≥ Ci,j+1-di,j+1 for, i= 1, 2…n;

 j= 1, 2…p;
 k=1, 2…m.
 Ci,j,k ≥ 0 for, i= 1, 2…n;
 j= 1, 2…p;
 k=1, 2…m
 Resource constraints
 Oi,j,k =1
If job j scheduled before the same job on

specified machine=0 Otherwise
For, i= 1, 2…n;
 j= 1, 2…p;
 k= 1, 2…m.

The job shop scheduling represented by

considering a three jobs and three machines
problem (3X3 problem) as follows.

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015

73

TABLE II. THE BASIC REPRESENTATION OF

FJSP

Representation of fixed id for the operations

can be noted, and then the above problem can
be written as follows;

TABLE III. REPRESENTATION OF FIXED ID

FOR THE OPERATIONS

Jobs 1 2 3
Operations 1 2 3 1 2 3 1 2 3
Machines 1 2 3 3 2 1 2 3 1

Work
remaining

9 7 4 9 5 2 7 5 3

Processing
time

2 3 4 4 3 2 2 2 3

Fixed ID 1 2 3 4 5 6 7 8 9

 The selection process to calculate the makes
span will be done by the following
considerations;

a. Most work remaining (MWKR) .
b. SPT (shortest processing time), if

MWRK is tie.
c. Random selection of operation if

processing time is tie.

IV. Proposed algorithm

The Differential evolution (DE) algorithm
proposed by Storn and Prince (1997) is one of
the latest population based evolution meta-
heuristic, which was originally devised for
solving continuous optimization problems, as
stochastic real-parameter global optimizer. The
DE employs simple mutation and cross-over to
generate new candidate solutions and applies
one-to-one competition scheme to determine
whether the new candidate or its present
solution will survives in the next generation,
since characterized by a novel mutation
operator. The algorithm is very good at

exploring the search space and locating the
promising region [14].

A. Description of Differential evolution

algorithm
a) Initialization

The initialization of the basic Differential

evolution algorithm aims to set the control
parameters and the initial population vector.
The parameters include the size of population
Np (Non deterministic polynomial). The
mutation scale factor (F) and cross-over
probability (Cr), It is obvious that the good set
of parameters can be enhance the ability of the
algorithm to search for the global optimization
or near optimum region with a high
convergence rate, as (DE) maintains a
population on Np real valued. The dimensional
vector denoted as XiG where i denotes ith
number of population and G denotes the
generation to which the population belongs to.

XiG =[X1,iG + X2,iG + X3,iG+,…+ XD,iG] (1)
 Where; i=1, 2, 3… .
Which each parameter, taking values from

user defined bounds.

Xj,iG Є [Xj
low, Xj

up] (2)
 Where; j=1, 2, 3… D.

The size of the population doesn’t change
during the evaluation process, and it is one of
the algorithm`s control parameters. Initially, the
population is randomly created and may cover
the entire parameter space with uniform
probability [15]. Initialization process is
followed by the process of evaluation, i.e. the
cost of each vector is evaluated and stored for
the feature reference.

b) Mutation
Mutation is an operation that adds a vector

differential to the population vector for each
target vector XiG.

 Where i=1, 2, 3…Np.
 The mutant vector is generated according to

the relation;
 ViG+1=XaG + F[XbG - XcG] (3)

Where a, b, c are different integer numbers
taken randomly for the mutation process over
the range of population i.e.[1,Np] and F is

Jobs

Operations-machine with processing time in
min

Operations Machine1 Machine2 Machine3
J1 O11 2 - -

O12 - 3 -
O13 - - 4

J2 O21 - - 4
O22 - 3 -
O23 2 - -

J3 O31 - 2 -
O32 - - 2
O33 3 - -

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015

74

scaling factor(F > 0), which is a real constant in
region[according to Storn and Price,1997].

Therefore, for each target vector XiG DE
generates a new mutant vector Vi,G+1 by adding
the weighted difference between two
(randomly selected) population vectors XbG
,XcG to a third XaG, (The best fitness vector)
with minimum makespan.

 The mutant vector will be used as a donor
vector for producing a trail vector, in the case
where mutant vector is to shift outside the
permitted interval(between the lower bound and
upper bound shown in (2).

 Then the parameters, can require by using
the relation,

If Vk < Vk

low then Vk = Vk
low (4)

If Vk > Vk
up then Vk= Vk

up
Where;
 k=1, 2, 3… D.

c) Cross-over
The Cross-over represents as typical case of

the information exchange between the
individuals. In the basic DE, in order to
increase diversity of the mutant vector, the
operator of cross-over is applied on the
population. This operator may partially
suppress the effect of mutation by forming a
trail vector (Generally the cross over
probability lies in between 0 to 1).

Then the generation of trail vector is
formulated as the following equation;

Ui,G+1 =[U1,iG+1 + U2,iG+1 +…+ UD,iG+1] (5)

The components of trail vector are taken either
from the mutant vector Vi,G+1 or from the
original target vector XiG according to the
relation;

Vk,iG+1 If random number Pr
Uk,iG+1= (6)
Xk,iG Otherwise
Where randomization is function that returns a
uniform floating point number in range [0,1]Pc

is cross-over probability (user defined
parameter) and initially generated random
number is a function which returns a random
integer number in the range. This function
ensures at least one parameter will be taken
from the mutant vector.

d) Selection
 Selection is the process of producing the

offspring to the new generation ‘G+1’.Unlike
many other EA`s (Evolutionary algorithms) DE
doesn’t use ranking or propositional selection.
Instead it decides whether the target or the trail
vector is allowed to advance in the next
generation by comparing their values. If the
values of the target vector are lower than that of
trail vector, then the target vector survives. It
reproduces its structure to the next generation.

 More finally, their greedy mechanism can
be written as follows:
if cost (xiG ≤ cost Ui,G+1)
 XiG+1= (7)

 Ui,G+1 Otherwise

V. Overview of Differential evolution
algorithm

The basic steps and working principle of
Differential evolution algorithm for a flexible
job shop scheduling problem is as follows;

Step 1: Specify the population size (Np),
scaling factor (F), cross-
over probability (Cr),
and maximum number of generations (Gmax).

Step 2: Set initial population G=0
Step 3: Evaluate each sample population

and specify
 The base vector and denote it a

XaG or XbestG.
Step 4: Mutation phase. Generate Noise

vector, by using
mutation operator (3).

Step 5 Cross- over operation. Generate
Np trail vectors using (6).
Step 6: For each trail or sample vector

evaluate the Makespan and compare with
makespan of Base vector XbestG.

Step 7: Selection process. Evaluating the
Target vector Xi,G+1 by the individual selection
operator described in (7). Label it as next
generation. Make G = G+1.

Step 8: Updating of XbestG.
Step 9: If G <Gmax then go to step 4.

Otherwise stop the procedure.

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015

75

VI. Implementation of Differential
Evolution Algorithm

TABLE IV. IMPLEMENTATION OF

DIFFERENTIAL EVOLUTION ALGORITHM FOR

FJSP

In Differential evolution algorithm each sample
pupation representation a chromosome and
each chromosome represents a solution for the
sequence. Each sequence is having a set of
operation for jobs on different machines.

Then the process will continued to calculate a
noise vector form two different randomly
selected vector. Trail one we have taken
chromosome 2and chromosome 3 and
chromosome 1is considered as the base vector.
The calculation of makespan for the each
chromosome is required, then the calculation of
makespan for the chromosome done for the
3X3 problem shown in table III.

a) Calculation of makespan for base
vector

Base vector→ 1 2 3 4 5 6 7 8 9
 (J, O, M) → (111)(122)(133)(213)(222)(231)(312)(323)(331)
 Roij 9 7 4 9 5 2 7 5 3
 P.T 2 3 4 4 3 2 2 2 3

 The Gantt chart is used to calculate the
makespan by considering the assigning
machines based on the most work reaming and
shortest processing time. The makespan of the
chromosome calculated and the time taken to
complete all the operations for the entire job is
17 minutes.

b) Calculation of noise vector

Base vector→1 2 3 4 5 6 7 8 9

 Let us choose two random vector chromosomes 2&3,

 Chromosome 2 → 1 4 2 7 5 6 8 3 9

 Chromosome 2 → 7 8 4 1 5 9 2 6 3
 (-)______________________
 6 4 2 6 0 3 6 3 6 X 0.45

 2 8 9 1 7 1 6 3 6
 Base vector→ 1 2 3 4 5 6 7 8 9
 (+)______________________
 3 10 12 5 12 7 13 11 15

 Converting the above values to `9’, we get
 3 1 3 5 3 7 4 2 6

Here it is observed that vector doesn’t
containing all the operations and some
operations are repeated, hence we replace the
non existing operation to avoid repetition.
Then the noise vector will be,

Noise vector → 3 1 8 5 9 7 4 2 6.
The makespan for the noise vector is

calculated by using Gantt chart and obtained as
11 minutes.

c) Calculation of Target vector
Consider,
Pr = Random number (probability generated
randomly).
C. R= Correction ratio (0<Cr<1).
Generally the correction ratio is defined or
fixed by the user.
Then the condition for selection the target
vector is as follows;

If, Pr< Cr. Then, Noise vector =Target vector.
If, Pr > Cr. Then, best of Noise vector = Target
vector.
For the base vector, Pr = 0.45 and Cr = 0.5,
here Pr<Cr then, the noise vector is considered
as Target vector. This procedure is to repeat for
all the population individually to calculate
make span.

VII. Experimental setup

The proposed DE algorithm was implemented
in MATLAB (version 8.5 on windows 64 bit
operation system) on an Intel 2.83 GHz Xeon
processor with 4 GB of RAM and 2 GB GPU,
To evaluate the performance of DE algorithms.
The following four sets of standard benchmark

 Sample
vector

Noise vector Target
vector

ch
r.

Popula
tion

C
max

Inter
media

te
Popul

i

C
m
ax

Cr

Pr New
pop
ulati
on

Cma

x

1 12345
6789

17 31859
7426

11 0.5

0.45 318
597
426

11

2 14275
6839

3 78415
9263

4 45126
7839

5 12453
6789

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015

76

in-stances in the FJSP literature are considered
[14].

(1) Kacem data: The data set consists of
five instances from Kacem et al. (2002b)
with number of jobs ranging from 4 to15,
number of machine ranging from 5 to 10,
number of operations for each job ranging
from 2 to 4, and number of operations for
all jobs ranges from 12 to 56.

(2) BRdata: The data set consists of 10
instances from Brandim- arte (1993),
which were generated randomly generated
using uniform distribution between given
limits. The number of jobs ranges from 10
to 20, number of machines ranges from 4
to 15, number of operations for each job
ranging from 5 to 15, and number of
operations for all jobs ranges from 55 to
240.

(3) BCdata: The data set consists of 21
instances from Barnes and Chambers
(1996), which were obtained from three
ever challenging classical JSP instances
(mt10, la24, la40) (Fisher and Thompson,
1963; Lawrence, 1984). The number of
jobs ranges from 10 to 15, number of
machines ranges from 11 to 18, number of
operations for each job ranging from 10 to
15, and number of operations for all jobs
ranges from 100 to 225.

The proposed algorithms run 100
independent times for each in-stance from
Kacem data, BRdata, and BCdata, and only run
10 independent times for each instance from
HUdata due to the large number of instances in
this data set. The results will involve four
metrics including the best makespan (Best), the
average makespan (AVG), the standard
deviation of makespan (SD), and the average
computational time in seconds (CPUav)
obtained by the related algorithms.

 To show the superiority of our DE
algorithm, we compare our computational
results with competitive algorithms HGA [16]
& Discrepancy algorithm [17] in the literature
for each data set.

VIII. Conceptual results

a) Results of Kacem instances
The first data set under study is Kacem data.

We compare ur DE with two recently proposed
algorithms including HGA & Discrepancy
algorithm. The detail results are listed in Table
5. The first column symbolizes the name for
each instance; the second column shows the
size of the instance, in which n stands for the
number of jobs and m represents the number of
machines; the third column lists the best known
solution (BKS) ever reported in the literature
for each instance; the remaining columns
describe the computational results HGA &
Discrepancy algorithm. The results from the
table 5, It was observed that the conceptual
results for HGA & Discrepancy algorithm were
quite equal to Differential evolution algorithm.

b) Results of BRdata instances
The first data set under study is Kacem data.

We compare our DE with two recently
proposed algorithms including HGA &
Discrepancy algorithm. The detail results are
listed in Table 5. The first column symbolizes
the name for each instance; the second column
shows the size of the instance, in which n
stands for the number of jobs and m represents
the number of machines; the third column lists
the best known solution (BKS) ever reported in
the literature for each instance; the remaining
columns describe the computational results
HGA & Discrepancy algorithm. The results
from the table 5, it was observed that the
conceptual results for HGA & Discrepancy
algorithm. The makespan for the instances are
comparative and the results obtained by DE
algorithm were shown to be effective and
efficient.

c) Results of BCdata instances
The BCdata is one of the largest data set for the
FJSP in the literature. Recent important work
on this data set can be referred the total 21
instances were shown in the table 7 and the
results obtained by DE algorithm were
compared along with average makespan for all
the population. The comparison of makespan of
HGA & Discrepancy algorithm to DE
algorithm was done and it is observed that the
conceptual results for BC data instances were
efficient and accurate.

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015

77

d) Effect of hybridizing DE and local
 search algorithms

To investigate the effectiveness of DE
algorithm based global search and local
search algorithms, the experiments and
comparisons are carried out between the DE

algorithm with Hybrid Genetic and
Discrepancy algorithms.

TABLE V. RESULTS OF KACEM INSTANCES.

Instance

n x m

(jobs/mac
hines)

BKS

HGA (Jie
Gao 2008)

Discrepanc
y

search(Abi
r Ben
2010)

Proposed DE algorithm

Population

size

Best

AVG

CPUav

Cmax Cmax
Case 1 4 x 5 11 11 11 100 11 11.05 0.15
Case 2 8 x 8 14 14 14 100 14 14.00 0.21
Case 3 10 x 7 11 11 11 100 11 11.02 0.29
Case 4 10 x 10 7 7 7 100 7 7.00 0.36
Case 5 15 x 15 11 11 11 100 11 11.05 0.41

TABLE VI. RESULTS OF BRDATA INSTANCES.

Table VII. RESULTS OF BCDATA INSTANCES.

Instance

n x m
(jobs/mac

hines)

BKS

HGA (Jie
Gao 2008)

Discrepan
cy

search(Abi
r Ben
2010)

Proposed DE algorithm

Population

size

Best

AVG

CPUav

Cmax Cmax
Mt10x 10 x 11 918 927 918 100 918 918.02 31.43
Mt10xx 10 x 12 918 910 918 100 918 918.06 31.70
Mt10xxx 10 x 13 918 918 918 100 918 918.23 35.43
Mt10xy 10 x 12 905 918 906 100 905 905.21 34.51
Mt10xyz 10 x 13 847 918 849 100 847 847.49 35.79
Mt10c1 10 x 11 927 905 928 100 928 928.21 31.07
Mt10cc 10 x 12 908 849 910 100 906 905.98 34.00
Setb4x 15 x 11 925 914 925 100 925 925.42 34.04
Setb4xx 15 x 12 925 914 925 100 925 925.02 31.76
Setb4xxx 15 x 13 925 925 925 100 924 924.05 31.89
Setb4xy 15 x 12 910 925 916 100 910 910.07 31.13

Instance

n x m

(jobs/mac
hines)

BKS

HGA (Jie
Gao 2008)

Discrepanc
y

search(Abi
r Ben
2010)

Proposed DE algorithm

Population

size

Best

AVG

CPUav

Cmax Cmax

MK01 10 x 6 40 40 40 100 40 40.00 1.78

MK02 10 x 6 26 26 26 100 26 26.01 2.84

MK03 15 x 8 204 204 204 100 204 203.97 11.47

MK04 15 x 8 60 60 60 100 60 60.02 5.07

MK05 15 x 4 172 173 175 100 173 172.91 23.21

MK06 10 x 15 58 58 60 100 61 61.20 7.89
MK07 20 x 5 139 144 139 100 141 141.01 13.21

MK08 20 x 10 523 523 523 100 521 520.97 31.25

MK09 20 x 10 307 307 307 100 308 308.25 29.12

MK10 20 x 15 197 198 198 100 197 197.02 24.55

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015

78

Setb3xyz 15 x 13 903 925 905 100 905 905.21 30.39
Setb4c9 15 x 11 914 916 919 100 914 914.01 32.19
Setb4cc 15 x 12 907 905 909 100 909 909.21 32.00
Seti5x 15 x 16 1198 1175 1201 100 1204 1204.02 78.20
Seti5xx 15 x 17 1197 1138 1199 100 1202 1202.08 76.52
Seti5xxx 15 x 18 1197 1204 1197 100 1202 1202.10 75.07
Seti5xy 15 x 17 1136 1202 1136 100 1138 1138.23 79.98
Seti5xyz 15 x 18 1125 1204 1125 100 1130 1130.41 81.85
Sei5c12 15 x 16 1174 1136 1174 100 1175 1175.56 65.06
Seti5cc 15 x 17 1136 1126 1136 100 1137 1137.21 74.83

IX. Conclusions

This paper can be summarized, that the
Differential evolution (DE) algorithm is the
effective tool to solve the Flexible job shop
scheduling problem. The performance of DE
was largely improved by means of local search
and some available knowledge was learned
from the optimization of FJSP, at the
same time, the existing knowledge was applied
to guide the current heuristic searching of DE.
Final experimental results indicate that the
proposed DE algorithm outperforms some
published methods in the quality of schedules.
The efficiency of the DE algorithm also helps
to solve the extension to multi-objective FJSSP
will be investigated in the near future.

References

[1] M.R. Garey, D.S. Johnson, R. Sethi,
The complexity of flow shop
 and job-shop scheduling, Mathematics of
Operations Research 1 (2)
(1996) 117–129.

[2] M. Kolonko, Some new results on
Simulated Annealing applied to
 the Job Shop Scheduling Problem,
European Journal of
 Operational Research 113 (1) (1999) 123–
136.
[3] F. Pezzella, E. Merelli, A Tabu Search
method guided by shifting
 bottleneck for the Job Shop Scheduling
Problem, European Journal of
Operational Research 120 (2) (2000) 297–
310.
[4] J.F. Goncalves, et al., A hybrid genetic
algorithm for the Job Shop Scheduling
Problem, European Journal of Operational

Research 167 (1) (2005) 77–95.

[5] K.L. Huang, C.J. Liao, Ant colony
optimization combined with
 taboo search for the job shop scheduling
problem, Computers and
 Operations Research 35 (4) (2008) 1030–
1046.
[6] D.J. Fonseca, D. Navaresse, Artificial
neural networks for job shop
 simulation, Advanced Engineering
Informatics 16 (4) (2002) 241–
 246.
[7] I.T. Tanev, T. Uozumi, Y. Morotome,
Hybrid evolutionary
 algorithm-based real-world Flexible Job
Shop Scheduling Problem:
application service provider approach,
Applied Soft
 Computing 5 (1) (2004) 87–100.

 [8] H. Chen, P.B. Luh, An alternative
framework to Lagrangian relaxation approach
for Job Shop Scheduling, European Journal of
Operational Research 149 (3) (2003) 499–512.

[9] W.Q. Huanh, A.H. Yin, An improved
shifting bottleneck procedure for the Job
Shop Scheduling Problem, Computers &
Operations Research 31 (12) (2004) 2093–
2110.
 [10] K. Jansen, M. Mastrolilli, R. Solis-Oba,
Approximation schemes for Job Shop
Scheduling Problems with controllable
processing times, European Journal of
Operational Research 167 (2) (2005) 297–
319. [11]P. Bruker, R. Schlie, Job-shop
scheduling with multi-purpose machines,
Com- puting 45 (4) (1990) 369–375.
[12] Arit Thammano,Ajchara phu-ang, A

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-5,2015

79

hybrid artificial bee colony algorithm
with local search for Flexible job shop
scheduling problem (2013).
[13] Rui Zhang, A Differential evolution
algorithm for Job shop scheduling
problems involving due date determination
decision.
[14] Yuan Yuan,Hua Xu, Flexible job shop
scheduling problem using hybrid
differential evolution algorithms (2013).
[15] Riza A.Rahman,Budi Santosa, Hybrid
Differential evolution and bottle neck
Heuristic algorithm to solve Bi-objective
Hybrid flow shop scheduling
unrelated parallel machines problems
(2014).
[16] Gao, J., Sun, L., & Gen, M. (2008). A
hybrid genetic and variable
 neighborhood descent algorithm for
flexible job shop scheduling problems.
Computers & Operations Research, 35(9),
2892–2907.
[17] Ben Hmida, A., Haouari, M.,
Huguet, M., & Lopez, P. (2010).
 Discrepancy search for the flexible job
shop scheduling problem. Computers &
Operations Research, 37(12), 2192–2201.

