

 ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

5

Abstract— A flexible manufacturing
system (FMS) is a manufacturing system in
which there is some amount of flexibility that
allows the system to react in case of changes,
whether predicted or unpredicted. This
flexibility is generally considered to fall into
two categories. The first category, machine
flexibility which enables the work stations to
perform different operations simultaneously
on a part when there is a sudden change in
demand. The second category is routing
flexibility which literally expands the work
floor by utilizing multiple numbers of
machines to perform the operations via
routing. Automated Guided Vehicles fall into
second category and acts as hosts for the
execution of functions which includes picking
and dropping, docking and undocking
required when routing flexibility comes into
play. The objective of the paper is to develop
an algorithm and code it in a software
language which when executed generates a
safe sequence to be followed to avoid
deadlock.

Key Words— AGVs, Deadlock, FMS,
Machine cell, Rerouting.

I. INTRODUCTION

 Advanced manufacturing systems today have
to deal with criteria involving multiple
workstations and machines, varying AGVs and
customer requirements with time. All these
parameters are to be well coordinated and

controlled therefore forcing the industries to
automate most parts of their work floor in order
to achieve un-interrupted production in turn
satisfying the customer demands with low
production costs. Such application of automated
systems in material storage and retrieval systems
involves Automated Guided Vehicles (AGVs)
which are human less, computer controlled
machines which move around the shop floor
performing actions like storage and retrieval,
picking and dropping, docking and undocking
kind of tasks which are linked to the production
process [2].
This paper deals with the deadlock avoidance
and rerouting of AGVs by developing a strategy,
writing algorithm and encoding it in a software
language. Deadlock can be defined as a situation
where a part or entire system of AGV stalls.
When this condition prevails on the work floor,
the activities which are crucial to the production
also stalls causing a breakdown in the production
which is an unfavorable situation. We develop a
strategy by analyzing the total number of AGVs
(Maximum AGVs), current status (Allocated
AGVs), free (Available AGVs) and future
requirements (Need) of the different work
stations for different tasks to be done by the
AGVs. All the above information is stored in a
database from where the user, AGVs and a
machine cell can access the data required
therefore providing ability to create and place
order on the work floor for required task to be
done voluntarily [7].

DEADLOCK AVOIDANCE AND RE-ROUTING OF
AUTOMATED GUIDED VEHICLES (AGVS) IN FLEXIBLE

MANUFACTURING SYSTEMS (FMS)
MD. Saddam Hussain1, B. Satish Kumar2, Dr. G.Janardhana Raju3

Email:1Saddam.mohd321@gmail.com, 2satishbk91@gmail.com,3gjraju_06@rediffmail.com

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

 ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

6

With the above information available in the data
base execution of algorithm starts by taking all
the inputs and follows certain predefined logical
steps and mathematical rules written the
program which will be viewed further in the flow
chart and therefore yields a result which will be
in the form of a sequence of processes to be
followed in order to avoid deadlock and ensure
safe path of AGV started from source to end at
the destination. The output generated will be a
sequence of processes to be carried out in order
to avoid any interruptions in production and
deadlock conditions.

II. LITERATURE SURVEY

Deadlock: A system is said to be in a deadlock if
a part or the whole of the system stalls. In the
AGVS, resources (zones between control points)
are shared among the whole population of
vehicles. Each of the vehicles can only occupy
one zone at a time[3].
Mutual exclusion: At least one AGV must be
held in a non-sharable mode; that is only one
machine at a time can use the AGV
No preemption: AGVs cannot be preempted;
that is an AGV can make itself available to the
machines voluntarily only after the currently
allocated stations is completed.
Circular wait: There must be a set such that
each AGV is waiting for another AGV to finish
its task as the other is waiting to execute at the
same station which ultimately forms a cycle
causing deadlock [12].

III. ALGORITHM

Execution of algorithm starts when a request is
placed in the system by a work station for an
AGV to perform the prescribed task. The request
is processed by comparing the requested demand
(No. of AGVs) to the available AGVs and two
possibilities are generated as follows. Firstly
when the requested order is above the available
then it is denied as it is not possible for the
system to allocate more AGVs than available. In
the other case if it is below, the algorithm checks
for any circular wait condition existing in the
queue and then the request is accepted with a
condition that AGV is left free at the instant the
task has completed as requested by the work
station and adds up to the available set. The
completed process is terminated from the queue
and an update is sent to data base which
comprises of the refreshed information about the
number of available, allocated and needed sets of
AGVs for the other processes. The cycle is
repeated for every request made by the machine
cell till all the processes in the queue are finished
a shown pictorially [5].

 Start

Enter the number of AGVs and machine
 cells

Enter the maximum number of AGVs
required by the cell

Enter the number of currently allocated
AGVs to the cells

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

 ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

7

 No

Yes

IV. MATH

Safety Algorithm: The algorithm for finding out
whether or not a system is in a safe state. This
algorithm can be described as follows.
Work and finish be vectors of length m and n
respectively. Initialize
Work=Available and Finish[i] =false for i=0,
1,….n-1.
Find an i such that both
a. Finish[i]==false
b. Need =work
If no such I exist, go to step4.
Work= work+Allocation
Finish[i] =true
Go to step2

If Finish[i]==true for all I, then the system is in a
safe state.

Machine-Request Algorithm: The algorithm
which determine if requests can be safely
granted.
Request, be the request vector for AGV Ai, if
Request[j]==k, then AGV Ai wants k instances
of machines type Mj, when a request for
machines is made by AGV Ai, the following
actions are taken.
If Request≤ Need, go to step2. Otherwise, raise
an error condition, since the AGV has exceeded
its maximum claim.
If Request≤Available, go to step3. Otherwise Ai,
must wait, since the machines are not available.
Have the system pretend to have allocated the
requested machines to AGV Ai by modifying the
state as follows;

*Available=Available-Request;
 *Allocation=Allocation +Request;

*Need=Need-Request;
If the resulting machine-allocation state is safe,
the transaction is completed, and AGV Ai is
allocated its machines. However, if the new state
is unsafe, then Ai must wait for Request, and the
old machine-allocation state is restored.

EQUATIONS

Several instances of a Machine type:
This defines the instances and state machines in
the work station denoted as below.

Available: A vector of length m indicates the
number of available machines of each type.

Avail[i][j]=k

Maximum: An n*m matrix defines the maximum
number of machines may needed by the AGVs
for its processing.

Max[i][j]=k

Allocation: An n*m matrix defines the number
of machines of each type currently allocated to
each AGV.

Allot[i][j]=k

Request: An n*m matrix indicates the current
request of each AGV if Request[i][j] equals k,

Enter the available number of AGVs

Request placed by the AGV for a specific
machine

Check whether
Request <Need

Request< Available

Request is accepted and AGV is allocated
to the cell for processing

Check the same condition for all the
followed requests and execute the
assignment till the last request

Need = maximum ‐

available

Stop

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

 ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

8

then AGV Ai is requesting k more instances of
machine type Mj.

Work and Finish be vectors of length m and n
respectively, initialize Work=Available. For
i=0,1…n-1. If allocation≠0, then finish[i]=false
otherwise finish[i]=true

Find an index I such that both

a. Finish[i]==false
b. Request≤work

If no such I exist, go to step4
Work=work+allocation
Finish[i]=true
Go to step2
If finish[i]==false for somei,0≤i<n, then
the system is in a deadlock state.
Moreover if finish[i]==false then job Ji is
deadlocked[7].

V. RESULT

The input parameters are fed into the system
which includes the number of AGVs and
machine cells on the shop floor, maximum and
currently allocated AGVs to the work stations,
available numbers of AGVs, the first request
initiated by a specific cell to an AGV like factors
and are compiled. When the program is run the
output obtained is a proper sequence of tasks
(requests) to be accomplished by AGVs in order
to avoid any chance of occurrence of deadlock. It
implies any deviation of performing tasks from
the sequence generated by the program leaves
the system in an unsafe state.
 Depending upon
the number and values given as input to the
system sometimes a sequence is generated which
does not include all the tasks that is an
incomplete sequence is obtained, which notifies
that immediate process after this sequence may
lead to a deadlock. A deadlock avoidance
algorithm is awaken when this kind of situations
are encountered on the shop floor. The deadlock
avoidance algorithm is basically a decision
making strategy with a few logical steps which
assigns some priority to the requests placed by
the machine cells for the AGVs. When the
situations like above are aroused the algorithm
forces the AGVs to perform the tasks as per the

priority which is labeled depending upon the role
importance of the task in the production instead
of following the sequence obtained.

VI. CONCLUSION

The banker’s algorithm which implemented in
the resolving of problems related to routing of
AGVs which frequently undergo deadlock like
situations generated the solution which is found
to be very effective in the form of a sequence of
jobs to be done by the AGVs so as to avoid
deadlock condition prevailing on the shop floor.
The algorithm written and coded in a computer
language C++ is capable of producing results for
any number of inputs given which enables the
user to obtain the safe sequence with less
computational efforts. The algorithm not only
produces a safe sequence for any number of
inputs but also instant as all the required
information about the status of enterprise and
work floor like machines, AGVs, MSP are
already provided and stored in a central database
which can be easily accessed.
 The work can conclude that, the
algorithm which is presently encoded in C++
language if generated in further advanced
computer language the implementation can be
further taken a step ahead to industrial Robots,
AGVs, CNCs and all other equipments on the
shop floor which are governed mostly by
computers hence laying a path for fully
automated, human less production operations on
the work floor [8].

VII. FUTURE SCOPE

 Application of INTRANET concept
where every individual AGV becomes
knowledgeable of every another AGV,
thus no deadlock can prevail as their
sources and destinations will be
predefined.

 The program written in software language
when interfaced with simulation soft
ware like AUTOMOD and FLEXSIM
animation can be viewed of what is going
in virtual environment without going for
real time application.

INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

 ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

9

 Implementing Graphical Information
System (GIS) as a vision system so that
the AGV can re-route itself when senses
any obstacle in its path.

 With the installation of Artificial
Intelligence (AI) visual and rerouting
ability can be provided so that deadlock
can be overcome even if occurs in any
circumstances

 REFERENCES

[1] ANDERSON, M. (1985) AGV system

simulation-a planning tool for AGV route
layout. Proceedings of the 3rd International
Conference on AGV systems, 291-296.

[2] International Journal of Production Research
ISSN 0020±7543 print/ISSN 1366±588X
online # 2002 Taylor & Francis Ltd

[3] Ram Pratap Yadav et al / VSRD
International Journal of Mechanical, Auto. &
Prod. Engg. Vol. 2 (7), 2012

[4] DUTT, S. (1991) Guided vehicle systems - A
simulation analysis. M. Sc. Thesis,
Department of Industrial and Systems
Engineering, Virginia Polytechnic Institute
and State University.

[5] Spyros A. Reveliotis. Conflict Resolution in
AGV Systems. School of Industrial &
Systems Engineering, Georgia Institute of
Technology.

[6] Benjamin Zhan F. (1996). Three Fastest
Shortest Path Algorithms on Real Road
Networks: Data Structures and Procedures.
Journal of Geographic Information and
Decision Analysis, vol.1, no.1, pp. 69-82.

[7] Chang, W.K., Tanchoco, J.M.A., and Koo,
P.H. (2005). Deadlock Prevention in
Manufacturing Systems with AGV Systems:
Banker’s Algorithm Approach. Journal of
Manufacturing Science and
Engineering,v119, 849-854.

[8] Hyuenbo, Cho, Kumaran, T.K., and Richard,
A.Wysk. (1995). Graph Theoretic Deadlock
Detection and Resolution for Flexible
Manufacturing Systems. IEEE Transactions
on Robotics and Automation, v11,
n3,413-421.

[9] Stefano Pallottino, Maria Grazia Scutella
(1998). Shortest path algorithms in
transportation models: Classical and
innovative aspects. University of Pisa.

[10] ARAKI, T., TAKAHASHI, T., SUEKANE,
M., & KAWAI, M. Flexible AGV system
simulator Proceedings of the 5th
International Conference on AGV Systems,
77-86.Ram Pratap Yadav et al / VSRD
International Journal of Mechanical, Auto. &
Prod. Engg. Vol. 2 (7), 2012282

[11] DEWSNUP, M. C. (1995) How to model
AGVS using ProModel for Windows.
Proceedings of 1995 Winter Simulation
Conf., 482-486.

[12] Yeh, M.S., and Yeh, W.C. (1998). Deadlock
Prediction and avoidance for zonecontrol
AGVS.INT.J.PROD.RES, v36, n10,
2879-2889.

