

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

1

Abstract— Scheduling of jobs in flexible
manufacturing systems involves a
complicated and complex evaluation of
parameters in order to obtain an efficient
sequence of processes to be carried on to
ensure a continuous production. This is a time
taking and tedious task as the set of
parameters to be evaluated may range to a
large number. The objective of this paper is to
develop an algorithm and therefore coded in
a software language with all the parameters
considered. Necessary conditions are fed as in
input to the program which then generates
the optimized sequence as an output to be
followed by executing the algorithm.
Key Words — FMS, Jobs, scheduling,
Machines.

I. INTRODUCTION

 Flexible manufacturing systems (FMS) are a
group of machines most preferably CNC which
are coordinated by a common control centre
which has the ability to deal with the variety of
products. It is a manufacturing system which
possesses the flexibility of adopting its machines
and factory environments according to the
product to be produced. Though the flexibility in
the manufacturing systems is an advantage it
proves to be a very complicated task when it
comes to scheduling of parts in a changing
environment. It has to be done keeping in view
of the number of parts to be processed, the
number of work stations and the number of
individual machines in each work station,
customer requirements and many other auxiliary
set of variables are to be considered [1].

The objective of this paper is to develop an
algorithm which can be applied in solving the
problem of scheduling on a large scale with
relative ease. Traditional scheduling method
does not keep up with the growing requirements
of the customers and enterprises to produce the
parts with low lead time low cost and instant
procurement. To achieve this, an effective
algorithm must be used such that an efficient
processing sequence is obtained assuring load
balance on the work station is maintained in
order to avoid heavy or under loading conditions
and get use of the machines to a full throughput.
It is further made Easy when the algorithm is
coded into a software language which enables
the operator perform scheduling task with
relative ease by simply entering the job
parameters and machining parameters as input
and when the program is run with as guided by
the algorithm the output will be a sequence to be
followed in order to avoid uninterrupted
production which is unfavorable to any
enterprise[2].

Structure of FMS

SCHEDULING IN FLEXIBLE MANUFACTURING SYSTEMS
(FMS)

S.Kaveri1, B.Satish Kumar2, V.Thirupathi3
Email:1sunkara.kaveri@gmail.com, 2satishbk91@gmail.com, 3thirulu629@gmail.com

 INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

2

II. ALGORITHM

When a new job enters the system, it must
declare the maximum number of machines of
each work station that it may need for its
processing. This number must not exceed the
total number of machines in the system. When a
job requests a set of machines, the system must
determine whether the allocation of these
machines to that job will leave the system in a
safe state. If it will, they are allocated; otherwise,
the job must wait until some other jobs get
processed.
 Data structures are maintained to govern
the above activities to store and retrieve the
functions when required. Some data structures
we use in our algorithm:

Available: A vector of length m indicates the
number of available machines of each cell. If
available[j]equals k, there are k instances of
machines available in station available.

Max: A n*m matrix defines the maximum
demand of each job. If Max[i][j] equals k, then
job Ji may request at most k instances of station.

Allocation: An n*m matrix defines the number
of jobs of each type currently allocated to each
machine. If allocation[i][j] equals k, then job is
currently allocated k instances of station.

Need: An n*m matrix indicates the remaining
machines need of each job. If Need [i][j] equals
k, then job may need k more instances of station
to complete its task[7].

III. MATH

Safety Algorithm: The algorithm for finding out
whether or not a system is in a safe state. This
algorithm can be described as follows.
Work and finish be vectors of length m and n
respectively. Initialize
Work=Available and Finish[i] =false for i=0,
1,….n-1.
Find an i such that both
a. Finish[i]==false
b. Need =work
If no such I exist, go to step4.
Work= work+Allocation
Finish[i] =true
Go to step2

If Finish[i]==true for all I, then the system is in a
safe state.
Machine-Request Algorithm: The algorithm
which determine if requests can be safely
granted.
Request, be the request vector for job Ji, if
Request[j]==k, then job Ji wants k instances of
machines type Mj, when a request for machines
is made by job Ji, the following actions are
taken.
If Request≤ Need, go to step2. Otherwise, raise
an error condition, since the job has exceeded its
maximum claim.
If Request≤Available, go to step3. Otherwise Ji,
must wait, since the machines are not available.
Have the system pretend to have allocated the
requested machines to job Ji by modifying the
state as follows;

 *Available=Available-Request;
 *Allocation=Allocation
+Request;
 *Need=Need-Request;
If the resulting machine-allocation state is safe,
the transaction is completed, and Job Ji is
allocated its machines. However, if the new state
is unsafe, then Ji must wait for Request, and the
old machine-allocation state is restored [5].

 Start

Enter the number of jobs and machines

Enter the maximum number of machines
required by the job

Enter the number of currently allocated
machines to the jobs

Enter the available number of machines

Need = maximum -

available

 INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

3

 No

Yes

EQUATIONS

Available: A vector of length m indicates the
number of available machines of each type.

Avail[i][j]=k
Maximum: An n*m matrix defines the maximum
number of machines may needed by the jobs for
its processing

Max[i][j]=k
Allocation: An n*m matrix defines the number
of machines of each type currently allocated to
each job.

Alloc[i][j]=k
Request: An n*m matrix indicates the current
request of each job if Request[i][j] equals k, then
job Ji is requesting k more instances of machine
type Mj.

Work and Finish be vectors of length m and n
respectively, initialize Work=Available. For
i=0,1…n-1. If allocation≠0, then finish[i]=false
otherwise finish[i]=true

Find an index I such that both
a. Finish[i]==false
b. Request≤work

If no such I exist, go to step4
Work=work+allocation
Finish[i]=true
Go to step2
If finish[i]==false for somei,0≤i<n, then
the system is in a deadlock state.
Moreover if finish[i]==false then job Ji is
deadlocked.

IV. RESULTS

The necessary parameters when given to the
program as input which includes the set
containing the total number of jobs, work
stations and the machines in each work station,
status of maximum, currently allocated,
available machines on the work floor and other
miscellaneous factors like processing time limit,
instances of each machine when are executed the
output obtained is a sequence of jobs to
processed so as to avoid any kind of deadlock
and breakdown on the shop floor. Therefore for
effective results and optimized usage of
machines on the shop floor the scheduling has to
be done according to the sequence obtained by as
the output by the program.
 If at all there is no proper sequence which can be
generated by the program for the given set of
values then it generates an incomplete sequence
of jobs to be processed up to which no blocking
or starving conditions prevail in the system
leaving the system in a safe operating state. It
notifies that the processing of immediate next
job after this sequence may lead to a blocking or
starving leaving the system in an unsafe state.
Additionally an avoidance algorithm can be used
to solve these kinds of situations [7].

V. CONCLUSION

Optimization procedure has been developed in
this work which is based on banker’s algorithm
and is implemented successfully for solving the
scheduling optimization problem of FMS. Codes
are written in C++ language. Results are
obtained for n jobs and m machines in the
system. With less computational effort it is
possible to obtain the solution for such a large
number of jobs and machines .This work leads to

Request placed by the job for a specific
machine

Check whether
Request <Need

Request< Available

Request is accepted and machine is
allocated to the job for processing

Check the same condition for all the
followed requests and execute the

assignment till the last request

Stop

 INTERNATIONAL JOURNAL OF ADVANCES IN PRODUCTION AND MECHANICAL ENGINEERING (IJAPME)

ISSN(PRINT):2394-6202,(ONLINE):2394-6210,VOLUME-1,ISSUE-4,2015

4

the conclusion that the procedures developed in
this work can be suitably modified to any kind of
FMS with a large number of components and
machines subject to multi objective functions.
If research carried on the algorithm and re
writing of the program in other advanced
software languages its application can be
implemented in a variety of fields which will
include availability and handling times of
loading/unloading stations, robots and AGVs.

VI. FUTURE SCOPE
 Multi objective scheduling for FMS

can be done by further development of
the algorithm unlike only job shop
scheduling done here.

 A deadlock prevention phenomenon is
applied in this paper which can be
more sophisticated by applying
deadlock avoidance strategy.

 The algorithm written here is coded in
C++ language which when coded in a
further sophisticated software
language the capability, accessibility
and responsive speed can be enhanced.

 The coded language when interfaced
with animation software like
FLEXSIM and AUTOMOD the visual
experience can also provided.

 REFERENCES
[1] Fang, H.-L., Ross, P., and Corne, D. (1993).

A promising genetic algorithm approach to
job-shop

[2] scheduling, rescheduling, and open-shop
scheduling problems. In Forrest, S., editor,
Proceedings of the Fifth International
Conference on Genetic Algorithms, pages
375–382, Morgan Kaufmann, SanMateo,
California.

[3] International Journal of Production Research
ISSN 0020±7543 print/ISSN 1366±588X
online # 2002 Taylor & Francis Ltd

[4] Ram Pratap Yadav et al / VSRD
International Journal of Mechanical, Auto. &
Prod. Engg. Vol. 2 (7), 2012

[5] Lin, S., Goodman, E., and Punch, W. (1997).
A genetic algorithm approach to dynamic job
shop scheduling problems. In B¨ack, T.,
editor, Proceedings of the Seventh
International Conference on Genetic
Algorithms, pages 481–489, Morgan
Kaufmann, San Mateo, California.

[6] Spyros A. Reveliotis. Conflict Resolution in
AGV Systems. School of Industrial &
Systems Engineering, Georgia Institute of
Technology.

[7] Benjamin Zhan F. (1996). Three Fastest
Shortest Path Algorithms on Real Road
Networks: Data Structures and Procedures.
Journal of Geographic Information and
Decision Analysis, vol.1, no.1, pp. 69-82.

[8] Chang, W.K., Tanchoco, J.M.A., and Koo,
P.H. (2005). Deadlock Prevention in
Manufacturing Systems with AGV Systems:
Banker’s Algorithm Approach. Journal of
Manufacturing Science and
Engineering,v119, 849-854.

[9] Hyuenbo, Cho, Kumaran, T.K., and Richard,
A.Wysk. (1995). Graph Theoretic Deadlock
Detection and Resolution for Flexible
Manufacturing Systems. IEEE Transactions
on Robotics and Automation, v11,
n3,413-421.

[10] Stefano Pallottino, Maria Grazia Scutella
(1998). Shortest path algorithms in
transportation models: Classical and
innovative aspects. University of Pisa.

[11] ARAKI, T., TAKAHASHI, T., SUEKANE,
M., & KAWAI, M. Flexible AGV system
simulator Proceedings of the 5th
International Conference on AGV Systems,
77-86.Ram Pratap Yadav et al / VSRD
International Journal of Mechanical, Auto. &
Prod. Engg. Vol. 2 (7), 2012282

[12] DEWSNUP, M. C. (1995) How to model
AGVS using ProModel for Windows.
Proceedings of 1995 Winter Simulation
Conf., 482-486.

[13] Yeh, M.S., and Yeh, W.C. (1998). Deadlock
Prediction and avoidance for zonecontrol
AGVS.INT.J.PROD.RES, v36, n10,
2879-2889.

[14] Storer, R.,Wu, S., and Vaccari, R. (1992).
New search spaces for sequencing problems
with application to job shop scheduling.
Management Science, 38:1495–1509.

[15] Taillard, E. (1993). Benchmarks for
basic scheduling problems. European
Journal of Operational Research,
64:287–295.

